結果

問題 No.1545 [Cherry 2nd Tune N] Anthem
ユーザー ygd.ygd.
提出日時 2021-06-15 23:35:04
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 2,440 bytes
コンパイル時間 276 ms
コンパイル使用メモリ 82,432 KB
実行使用メモリ 251,752 KB
最終ジャッジ日時 2024-06-08 16:13:34
合計ジャッジ時間 25,498 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 44 ms
54,528 KB
testcase_01 AC 42 ms
54,144 KB
testcase_02 AC 42 ms
54,528 KB
testcase_03 AC 40 ms
54,656 KB
testcase_04 AC 137 ms
84,224 KB
testcase_05 AC 428 ms
124,220 KB
testcase_06 AC 364 ms
109,200 KB
testcase_07 AC 175 ms
88,192 KB
testcase_08 AC 644 ms
114,492 KB
testcase_09 AC 463 ms
97,424 KB
testcase_10 AC 155 ms
90,240 KB
testcase_11 AC 249 ms
103,296 KB
testcase_12 AC 312 ms
118,248 KB
testcase_13 AC 171 ms
95,744 KB
testcase_14 AC 162 ms
95,616 KB
testcase_15 AC 117 ms
80,768 KB
testcase_16 AC 193 ms
103,724 KB
testcase_17 AC 495 ms
92,144 KB
testcase_18 AC 339 ms
127,928 KB
testcase_19 AC 283 ms
104,832 KB
testcase_20 AC 282 ms
86,644 KB
testcase_21 AC 238 ms
127,428 KB
testcase_22 AC 231 ms
126,068 KB
testcase_23 AC 370 ms
98,304 KB
testcase_24 AC 154 ms
80,256 KB
testcase_25 AC 147 ms
78,848 KB
testcase_26 AC 60 ms
65,920 KB
testcase_27 AC 137 ms
78,592 KB
testcase_28 AC 163 ms
79,744 KB
testcase_29 AC 166 ms
80,804 KB
testcase_30 AC 152 ms
79,744 KB
testcase_31 AC 170 ms
81,348 KB
testcase_32 AC 123 ms
77,312 KB
testcase_33 AC 200 ms
81,564 KB
testcase_34 AC 172 ms
80,200 KB
testcase_35 AC 224 ms
81,728 KB
testcase_36 AC 213 ms
80,840 KB
testcase_37 AC 110 ms
77,312 KB
testcase_38 AC 186 ms
79,452 KB
testcase_39 AC 125 ms
77,824 KB
testcase_40 AC 162 ms
79,232 KB
testcase_41 AC 113 ms
76,928 KB
testcase_42 AC 175 ms
81,248 KB
testcase_43 AC 173 ms
80,908 KB
testcase_44 AC 72 ms
75,136 KB
testcase_45 AC 41 ms
54,400 KB
testcase_46 AC 183 ms
92,544 KB
testcase_47 AC 181 ms
91,520 KB
testcase_48 AC 229 ms
96,512 KB
testcase_49 AC 298 ms
95,488 KB
testcase_50 AC 429 ms
99,968 KB
testcase_51 AC 174 ms
107,008 KB
testcase_52 AC 425 ms
101,888 KB
testcase_53 AC 216 ms
92,416 KB
testcase_54 AC 143 ms
98,432 KB
testcase_55 AC 353 ms
97,792 KB
testcase_56 AC 70 ms
75,520 KB
testcase_57 AC 360 ms
107,648 KB
testcase_58 AC 239 ms
92,416 KB
testcase_59 AC 154 ms
94,848 KB
testcase_60 AC 99 ms
87,936 KB
testcase_61 AC 190 ms
94,336 KB
testcase_62 AC 297 ms
101,120 KB
testcase_63 AC 228 ms
101,760 KB
testcase_64 TLE -
testcase_65 AC 425 ms
90,240 KB
testcase_66 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

from heapq import heapify, heappop, heappush
from collections import deque


def main():
    N,S,T,K = map(int,input().split()); INF = float("inf")
    S-=1;T-=1 #0-index
    X = list(map(int,input().split()))
    G = [[] for _ in range(N)]
    M = int(input())
    for _ in range(M):
        A,B,Y = map(int,input().split())
        A-=1;B-=1
        G[A].append((Y,B))

    Q = deque([])
    Q.append(S)
    d_bfs = [INF]*N
    d_bfs[S] = 1
    while Q:
        v = Q.popleft()
        for cost, u in G[v]:
            if d_bfs[u] != INF: continue
            d_bfs[u] = d_bfs[v] + 1
            Q.append(u)
    if d_bfs[T] == INF:
        print("Impossible");exit()

    

    def dijkstra_heap2(s,G,t,K):
        INF = float("inf")
        #S:start, V: node, E: Edge, G: Graph
        V = len(G)
        #dp[i][j]: i番目の歌を歌って今j曲目(i番目の歌を含む)
        if K <= 10:
            MAX = 20
        elif K <= 130:
            MAX = 1000
        else:
            MAX = pow(10,5)
        dp = [[INF]*MAX for _ in range(V)]
        #d = [INF for _ in range(V)]
        dp[s][1] = X[s]
        prev = [[-1]*MAX for _ in range(V)]
        PQ = []
        heappush(PQ,(X[s],s,1)) #時間, 位置, 何曲目

        while PQ:
            c,v,n = heappop(PQ)
            if v == t and n >= K:
                break
            if dp[v][n] < c:
                continue
            dp[v][n] = c
            #if n+1 >= MAX: #これ以上は配列外参照
            #    continue
            for cost,u in G[v]:
                nxt = min(n+1, MAX-1)
                if dp[u][nxt] <= cost + X[u] + dp[v][n]:
                    continue
                dp[u][nxt] = cost + X[u] + dp[v][n]
                prev[u][nxt] = v
                heappush(PQ,(dp[u][nxt], u, nxt))

        return dp, prev

    d, keiro = dijkstra_heap2(S,G,T,K)
    #print(d)
    #print(keiro)
    ans = INF
    num = INF #何曲か
    for i in range(K,len(d[T])):
        if d[T][i] < ans:
            ans = d[T][i]
            num = i
    if ans == INF:
        print("Impossible")
    else:
        print("Possible")
        print(ans)
        print(num)
        ret = [T+1] #1-index
        #num -= 1
        now = T
        while num > 1:
            pre = keiro[now][num]
            ret.append(pre+1) #1-index
            now = pre
            num -= 1
        ret.reverse()
        print(*ret)



if __name__ == '__main__':
    main()
0