結果
| 問題 |
No.1753 Don't cheat.
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-06-19 17:24:00 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 1,187 ms / 3,000 ms |
| コード長 | 2,742 bytes |
| コンパイル時間 | 386 ms |
| コンパイル使用メモリ | 82,452 KB |
| 実行使用メモリ | 86,408 KB |
| 最終ジャッジ日時 | 2024-12-31 18:25:25 |
| 合計ジャッジ時間 | 27,014 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 30 |
ソースコード
MOD = 998244353
half = pow(2, MOD - 2, MOD)
def int2frac(n, m=None, N = 10000, D = 10000):
"""
Return (r, s) s.t. r = s * n (mod m) if such a pair exists.
Otherwise, return (0, 0).
Parameters
----------
n: an integer that will be represented as a fraction.
m: A modulus used to represent n.
N: An upperbound of r, which is the numerator of n.
D: An upperbound of s, which is the denominator of n.
"""
def gcd(a, b):
while b:
a, b = b, a % b
return a
if m is None:
m = MOD
v = (m, 0)
w = (n, 1)
while w[0] > N:
q = v[0] // w[0]
v, w = w, (v[0] - q * w[0], v[1] - q * w[1])
if w[1] < 0:
w = (-w[0], -w[1])
if w[1] <= D and gcd(w[0], w[1]) == 1:
return w
else:
return (0, 0)
def fwht(a) -> None:
"""
In-place Fast Walsh–Hadamard Transform of array a.
Reference: https://en.wikipedia.org/wiki/Fast_Walsh%E2%80%93Hadamard_transform
"""
h = 1
while h < len(a):
for i in range(0, len(a), h * 2):
for j in range(i, i + h):
x = a[j]
y = a[j + h]
a[j] = (x + y) % MOD
a[j + h] = (x - y) % MOD
h *= 2
def ifwht(a) -> None:
"""
In-place Inverse Fast Walsh–Hadamard Transform of array a.
Reference: https://en.wikipedia.org/wiki/Fast_Walsh%E2%80%93Hadamard_transform
"""
h = 1
while h < len(a):
for i in range(0, len(a), h * 2):
for j in range(i, i + h):
x = a[j]
y = a[j + h]
a[j] = (x + y) * half % MOD
a[j + h] = (x - y) * half % MOD
h *= 2
N = int(input())
As = list(map(int, input().split()))
# assert 1 <= N <= 2 * 10 ** 3
# assert all(0 <= A <= 10 ** 5 for A in As)
# assert N + 1 == len(As)
# assert As[0]
sumAs = sum(As)
invsumAs = pow(sum(As), MOD - 2, MOD)
for i in range(N + 1):
As[i] *= invsumAs
As[i] %= MOD
# print([int2frac(A) for A in As])
z = 1 << N.bit_length()
e0 = [0] * z
e0[0] = 1
fwht(e0)
As_fwht = As + [0] * (z - N - 1)
fwht(As_fwht)
fwhts = []
for i, A in enumerate(As):
t = [0] * z
t[i] = A
fwht(t)
fwhts.append(t)
q = [pow(1 - As_fwht[k] + fwhts[0][k], MOD - 2, MOD) * As[0] % MOD * e0[k] % MOD for k in range(z)]
ifwht(q)
psum = [0] * z
for x in range(1, N + 1):
p = [pow(1 - As_fwht[k] + fwhts[x][k] + fwhts[0][k], MOD - 2, MOD) * As[x] % MOD * e0[k] % MOD for k in range(z)]
ifwht(p)
for i, e in enumerate(p):
psum[i] += e
psum[i] %= MOD
answer = q[0]
for xor in range(z):
answer += psum[xor] * q[xor] % MOD
answer %= MOD
print((1 - answer) % MOD)