結果

問題 No.1574 Swap and Repaint
ユーザー KoD
提出日時 2021-06-20 16:11:09
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 7,393 bytes
コンパイル時間 3,550 ms
コンパイル使用メモリ 205,108 KB
最終ジャッジ日時 2025-01-22 10:34:29
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 16 TLE * 17
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using i32 = std::int32_t;
using u32 = std::uint32_t;
using i64 = std::int64_t;
using u64 = std::uint64_t;
using i128 = __int128_t;
using u128 = __uint128_t;
using isize = std::ptrdiff_t;
using usize = std::size_t;
class rep {
struct Iter {
usize itr;
constexpr Iter(const usize pos) noexcept : itr(pos) {}
constexpr void operator++() noexcept { ++itr; }
constexpr bool operator!=(const Iter& other) const noexcept { return itr != other.itr; }
constexpr usize operator*() const noexcept { return itr; }
};
const Iter first, last;
public:
explicit constexpr rep(const usize first, const usize last) noexcept : first(first), last(std::max(first, last)) {}
constexpr Iter begin() const noexcept { return first; }
constexpr Iter end() const noexcept { return last; }
};
template <class T> constexpr T totient(T x) {
T ret = x;
for (T i = 2; i * i <= x; ++i) {
if (x % i == 0) {
ret /= i;
ret *= i - 1;
while (x % i == 0) x /= i;
}
}
if (x > 1) {
ret /= x;
ret *= x - 1;
}
return ret;
}
template <class T> constexpr T rem_euclid(T value, const T& mod) { return (value %= mod) >= 0 ? value : value + mod; }
template <u32 MOD, std::enable_if_t<((u32)1 <= MOD and MOD <= ((u32)1 << 31))>* = nullptr> class StaticModint {
using Mint = StaticModint;
static inline constexpr u32 PHI = totient(MOD);
u32 v;
public:
static constexpr u32 mod() noexcept { return MOD; }
template <class T, std::enable_if_t<std::is_signed_v<T> and std::is_integral_v<T>>* = nullptr>
static constexpr T normalize(const T x) noexcept {
return rem_euclid<std::common_type_t<T, i64>>(x, MOD);
}
template <class T, std::enable_if_t<std::is_unsigned_v<T> and std::is_integral_v<T>>* = nullptr>
static constexpr T normalize(const T x) noexcept {
return x % MOD;
}
constexpr StaticModint() noexcept : v(0) {}
template <class T> constexpr StaticModint(const T x) noexcept : v(normalize(x)) {}
template <class T> static constexpr Mint raw(const T x) noexcept {
Mint ret;
ret.v = x;
return ret;
}
constexpr u32 get() const noexcept { return v; }
constexpr Mint neg() const noexcept { return raw(v == 0 ? 0 : MOD - v); }
constexpr Mint inv() const noexcept { return pow(PHI - 1); }
constexpr Mint pow(u64 exp) const noexcept {
Mint ret(1), mult(*this);
for (; exp > 0; exp >>= 1) {
if (exp & 1) ret *= mult;
mult *= mult;
}
return ret;
}
constexpr Mint operator-() const noexcept { return neg(); }
constexpr Mint operator~() const noexcept { return inv(); }
constexpr Mint operator+(const Mint& rhs) const noexcept { return Mint(*this) += rhs; }
constexpr Mint& operator+=(const Mint& rhs) noexcept {
if ((v += rhs.v) >= MOD) v -= MOD;
return *this;
}
constexpr Mint operator-(const Mint& rhs) const noexcept { return Mint(*this) -= rhs; }
constexpr Mint& operator-=(const Mint& rhs) noexcept {
if (v < rhs.v) v += MOD;
v -= rhs.v;
return *this;
}
constexpr Mint operator*(const Mint& rhs) const noexcept { return Mint(*this) *= rhs; }
constexpr Mint& operator*=(const Mint& rhs) noexcept {
v = (u64)v * rhs.v % MOD;
return *this;
}
constexpr Mint operator/(const Mint& rhs) const noexcept { return Mint(*this) /= rhs; }
constexpr Mint& operator/=(const Mint& rhs) noexcept { return *this *= rhs.inv(); }
constexpr bool operator==(const Mint& rhs) const noexcept { return v == rhs.v; }
constexpr bool operator!=(const Mint& rhs) const noexcept { return v != rhs.v; }
friend std::ostream& operator<<(std::ostream& stream, const Mint& rhs) { return stream << rhs.v; }
};
using Modint1000000007 = StaticModint<1000000007>;
using Modint998244353 = StaticModint<998244353>;
constexpr u64 ceil_log2(const u64 x) {
u64 e = 0;
while (((u64)1 << e) < x) ++e;
return e;
}
template <class F> class AutoReallocation {
using R = typename decltype(std::declval<F>()((usize)0))::value_type;
F func;
mutable std::vector<R> data;
public:
explicit AutoReallocation(F&& f) : func(std::forward<F>(f)), data() {}
void reserve(const usize size) const {
if (data.size() < size) data = func(((usize)1 << ceil_log2(size)));
}
R operator[](const usize i) const {
reserve(i + 1);
return data[i];
}
};
template <class F> decltype(auto) auto_realloc(F&& f) {
using G = std::decay_t<F>;
return AutoReallocation<G>(std::forward<G>(f));
}
template <class M> struct ModintUtil {
static inline const auto fact = auto_realloc([](const usize n) {
std::vector<M> ret(n);
ret[0] = M(1);
for (const usize i : rep(1, n)) {
ret[i] = ret[i - 1] * M(i);
}
return ret;
});
static inline const auto inv = auto_realloc([](const usize n) {
std::vector<M> ret(n);
if (n == 1) return ret;
ret[1] = M(1);
for (const usize i : rep(2, n)) {
ret[i] = -M(M::mod() / i) * ret[M::mod() % i];
}
return ret;
});
static inline const auto inv_fact = auto_realloc([](const usize n) {
std::vector<M> ret(n);
ret[0] = M(1);
for (const usize i : rep(1, n)) {
ret[i] = ret[i - 1] * inv[i];
}
return ret;
});
static M binom(const usize n, const usize k) {
assert(k <= n);
return fact[n] * inv_fact[n - k] * inv_fact[k];
}
static M factpow(const usize n, const usize k) {
assert(k <= n);
return fact[n] * inv_fact[n - k];
}
static M homo(const usize n, const usize k) {
if (n == 0 and k == 0) return M(1);
return binom(n + k - 1, k);
}
};
template <class T> using Vec = std::vector<T>;
using Fp = Modint998244353;
using Util = ModintUtil<Fp>;
void main_() {
usize N;
std::cin >> N;
Vec<Fp> A(N);
for (auto& x : A) {
u32 y;
std::cin >> y;
x = y;
}
Vec<Fp> more(N + 1);
for (const auto i : rep(0, N)) {
more[i] = Util::factpow(N - 1, (N - 1) - i);
}
Vec<Fp> pow2(2 * N);
pow2[0] = 1;
for (const auto i : rep(1, 2 * N)) {
pow2[i] = pow2[i - 1] * 2;
}
for (const auto k : rep(0, N + 1)) {
Fp ans, sum;
for (const auto i : rep(0, N - 1)) {
sum += (more[i] - more[i + 1] * Util::inv[2]) * pow2[2 * ((N - 1) - i) + i];
ans += sum * A[i];
}
for (const auto j : rep(0, N)) {
ans += more[j] * pow2[2 * ((N - 1) - j) + j] * A[N - 1];
}
std::cout << ans * Fp(N - 1).pow(k) << '\n';
Vec<Fp> next(N);
for (const auto i : rep(0, N)) {
next[i] += A[i];
if (i > 0) {
next[i] += A[i - 1] / (N - 1);
next[i] -= A[i] / (N - 1);
}
if (i < N - 1) {
next[i] += A[i + 1] / (N - 1);
next[i] -= A[i] / (N - 1);
}
}
A = std::move(next);
}
}
int main() {
std::ios_base::sync_with_stdio(false);
std::cin.tie(nullptr);
main_();
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0