結果

問題 No.1574 Swap and Repaint
ユーザー KoD
提出日時 2021-06-20 17:26:14
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
CE  
(最新)
AC  
(最初)
実行時間 -
コード長 17,334 bytes
コンパイル時間 30,452 ms
コンパイル使用メモリ 5,376 KB
最終ジャッジ日時 2025-01-22 10:38:07
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。

コンパイルメッセージ
コンパイルが30秒の制限時間を超えました

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/extc++.h>
#include <unistd.h>
using namespace std;
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#endif
using ll = long long;
using ld = long double;
using ull = long long;
#define REP3(i, m, n) for (int i = (m); (i) < int(n); ++(i))
#define ALL(x) begin(x), end(x)
#define all(s) (s).begin(), (s).end()
#define rep2(i, m, n) for (int i = (m); i < (n); ++i)
#define rep(i, n) rep2(i, 0, n)
#define drep2(i, m, n) for (int i = (m)-1; i >= (n); --i)
#define drep(i, n) drep2(i, n, 0)
#define rever(vec) reverse(vec.begin(), vec.end())
#define sor(vec) sort(vec.begin(), vec.end())
#define fi first
#define se second
#define P pair<ll, ll>
#define REP(i, n) for (int i = 0; i < (n); ++i)
#define in scanner.read_int()
const ll mod = 998244353;
// const ll mod = 1000000007;
const ll inf = 2000000000000000000ll;
static const long double pi = 3.141592653589793;
template <class T> void vcin(vector<T>& n) {
for (int i = 0; i < int(n.size()); i++) cin >> n[i];
}
template <class T> void vcout(vector<T>& n) {
for (int i = 0; i < int(n.size()); i++) {
cout << n[i] << " ";
}
cout << endl;
}
void YesNo(bool a) {
if (a) {
cout << "Yes" << endl;
} else {
cout << "No" << endl;
}
}
void YESNO(bool a) {
if (a) {
cout << "YES" << endl;
} else {
cout << "NO" << endl;
}
}
template <class T, class U> void chmax(T& t, const U& u) {
if (t < u) t = u;
}
template <class T, class U> void chmin(T& t, const U& u) {
if (t > u) t = u;
}
template <class T> void ifmin(T t, T u) {
if (t > u) {
cout << -1 << endl;
} else {
cout << t << endl;
}
}
template <class T> void ifmax(T t, T u) {
if (t > u) {
cout << -1 << endl;
} else {
cout << t << endl;
}
}
template <typename T, typename... Args> auto make_vector(T x, int arg, Args... args) {
if constexpr (sizeof...(args) == 0)
return vector<T>(arg, x);
else
return vector(arg, make_vector<T>(x, args...));
}
ll modPow(ll a, ll n, ll mod) {
ll ret = 1;
ll p = a % mod;
while (n) {
if (n & 1) ret = ret * p % mod;
p = p * p % mod;
n >>= 1;
}
return ret;
}
void gbjsmzmfuuvdf() {
ios::sync_with_stdio(false);
std::cin.tie(nullptr);
cout << fixed << setprecision(20);
}
class Scanner {
vector<char> buffer;
ssize_t n_written;
ssize_t n_read;
public:
Scanner() : buffer(1024 * 1024) { do_read(); }
int64_t read_int() {
int64_t ret = 0, sgn = 1;
int ch = current_char();
while (isspace(ch)) {
ch = next_char();
}
if (ch == '-') {
sgn = -1;
ch = next_char();
}
for (; isdigit(ch); ch = next_char()) ret = (ret * 10) + (ch - '0');
return sgn * ret;
}
private:
void do_read() {
ssize_t r = read(0, &buffer[0], buffer.size());
if (r < 0) {
throw runtime_error(strerror(errno));
}
n_written = r;
n_read = 0;
}
inline int next_char() {
++n_read;
if (n_read == n_written) {
do_read();
}
return current_char();
}
inline int current_char() { return (n_read == n_written) ? EOF : buffer[n_read]; }
};
using mint = modint998244353;
struct S {
mint value;
int size;
};
using F = mint;
S op(S a, S b) { return {a.value + b.value, a.size + b.size}; }
S e() { return {mint(0), 1}; }
S mapping(F f, S x) { return {x.value + x.size * f, x.size}; }
F composition(F f, F g) { return f + g; }
F id() { return mint(0); }
mint k[200100];
void com() {
k[0] = 1;
for (int i = 1; i < 200100; i++) {
k[i] = k[i - 1] * i;
}
}
enum Mode {
FAST = 1,
NAIVE = -1,
};
template <class T, Mode mode = FAST> struct FormalPowerSeries : std::vector<T> {
using std::vector<T>::vector;
using std::vector<T>::size;
using std::vector<T>::resize;
using F = FormalPowerSeries;
F& operator+=(const F& g) {
for (int i = 0; i < int(min((*this).size(), g.size())); i++) {
(*this)[i] += g[i];
}
return *this;
}
F& operator+=(const T& t) {
assert(int((*this).size()));
(*this)[0] += t;
return *this;
}
F& operator-=(const F& g) {
for (int i = 0; i < int(min((*this).size(), g.size())); i++) {
(*this)[i] -= g[i];
}
return *this;
}
F& operator-=(const T& t) {
assert(int((*this).size()));
(*this)[0] -= t;
return *this;
}
F& operator*=(const T& g) {
for (int i = 0; i < int((*this).size()); i++) {
(*this)[i] *= g;
}
return *this;
}
F& operator/=(const T& g) {
T div = g.inv();
for (int i = 0; i < int((*this).size()); i++) {
(*this)[i] *= div;
}
return *this;
}
F& operator<<=(const int d) {
int n = (*this).size();
(*this).insert((*this).begin(), d, 0);
(*this).resize(n);
return *this;
}
F& operator>>=(const int d) {
int n = (*this).size();
(*this).erase((*this).begin(), (*this).begin() + min(n, d));
(*this).resize(n);
return *this;
}
F& operator=(const std::vector<T>& v) {
int n = (*this).size();
for (int i = 0; i < n; ++i) (*this)[i] = v[i];
return *this;
}
F operator-() const {
F ret = *this;
return ret * -1;
}
F& operator*=(const F& g) {
if (mode == FAST) {
int n = (*this).size();
auto tmp = atcoder::convolution(*this, g);
for (int i = 0; i < n; ++i) {
(*this)[i] = tmp[i];
}
return *this;
} else {
int n = (*this).size(), m = g.size();
for (int i = n - 1; i >= 0; --i) {
(*this)[i] *= g[0];
for (int j = 1; j < std::min(i + 1, m); j++) (*this)[i] += (*this)[i - j] * g[j];
}
return *this;
}
}
F& operator/=(const F& g) {
if (mode == FAST) {
int n = (*this).size();
(*this) = atcoder::convolution(*this, g.inv());
return *this;
} else {
assert(g[0] != T(0));
T ig0 = g[0].inv();
int n = (*this).size(), m = g.size();
for (int i = 0; i < n; ++i) {
for (int j = 1; j < std::min(i + 1, m); ++j) (*this)[i] -= (*this)[i - j] * g[j];
(*this)[i] *= ig0;
}
return *this;
}
}
F& operator%=(const F& g) { return *this -= *this / g * g; }
F operator*(const T& g) const { return F(*this) *= g; }
F operator-(const T& g) const { return F(*this) -= g; }
F operator*(const F& g) const { return F(*this) *= g; }
F operator-(const F& g) const { return F(*this) -= g; }
F operator+(const F& g) const { return F(*this) += g; }
F operator/(const F& g) const { return F(*this) /= g; }
F operator%(const F& g) const { return F(*this) %= g; }
F operator<<(const int d) const { return F(*this) <<= d; }
F operator>>(const int d) const { return F(*this) >>= d; }
void onemul(const int d, const T c) {
int n = (*this).size();
for (int i = n - d - 1; i >= 0; i--) {
(*this)[i + d] += (*this)[i] * c;
}
}
void onediv(const int d, const T c) {
int n = (*this).size();
for (int i = 0; i < n - d; i++) {
(*this)[i + d] -= (*this)[i] * c;
}
}
T eval(const T& t) const {
int n = (*this).size();
T res = 0, tmp = 1;
for (int i = 0; i < n; ++i) {
res += (*this)[i] * tmp, tmp *= t;
}
return res;
}
F inv(int deg = -1) const {
int n = (*this).size();
assert(mode == FAST and n and (*this)[0] != 0);
if (deg == -1) deg = n;
assert(deg > 0);
F res{(*this)[0].inv()};
while (int(res.size()) < deg) {
int m = res.size();
F f((*this).begin(), (*this).begin() + std::min(n, m * 2)), r(res);
f.resize(m * 2), atcoder::internal::butterfly(f);
r.resize(m * 2), atcoder::internal::butterfly(r);
for (int i = 0; i < m * 2; ++i) f[i] *= r[i];
atcoder::internal::butterfly_inv(f);
f.erase(f.begin(), f.begin() + m);
f.resize(m * 2), atcoder::internal::butterfly(f);
for (int i = 0; i < m * 2; ++i) f[i] *= r[i];
atcoder::internal::butterfly_inv(f);
T iz = T(m * 2).inv();
iz *= -iz;
for (int i = 0; i < m; ++i) f[i] *= iz;
res.insert(res.end(), f.begin(), f.begin() + m);
}
res.resize(deg);
return res;
}
F& diff_inplace() {
int n = (*this).size();
for (int i = 1; i < n; ++i) (*this)[i - 1] = (*this)[i] * i;
(*this)[n - 1] = 0;
return *this;
}
F diff() const { F(*this).diff_inplace(); }
F& integral_inplace() {
int n = (*this).size(), mod = T::mod();
std::vector<T> inv(n);
{
inv[1] = 1;
for (int i = 2; i < n; ++i) inv[i] = T(mod) - inv[mod % i] * (mod / i);
}
for (int i = n - 2; i >= 0; --i) (*this)[i + 1] = (*this)[i] * inv[i + 1];
(*this)[0] = 0;
return *this;
}
F integral() const { return F(*this).integral_inplace(); }
F& log_inplace() {
int n = (*this).size();
assert(n and (*this)[0] == 1);
F f_inv = (*this).inv();
(*this).diff_inplace();
(*this) *= f_inv;
(*this).integral_inplace();
return *this;
}
F log() const { return F(*this).log_inplace(); }
F& deriv_inplace() {
int n = (*this).size();
assert(n);
for (int i = 2; i < n; ++i) (*this)[i] *= i;
(*this).erase((*this).begin());
(*this).push_back(0);
return *this;
}
F deriv() const { return F(*this).deriv_inplace(); }
F& exp_inplace() {
int n = (*this).size();
assert(n and (*this)[0] == 0);
F g{1};
(*this)[0] = 1;
F h_drv((*this).deriv());
for (int m = 1; m < n; m *= 2) {
F f((*this).begin(), (*this).begin() + m);
f.resize(2 * m), atcoder::internal::butterfly(f);
auto mult_f = [&](F& p) {
p.resize(2 * m);
atcoder::internal::butterfly(p);
for (int i = 0; i < 2 * m; ++i) p[i] *= f[i];
atcoder::internal::butterfly_inv(p);
p /= 2 * m;
};
if (m > 1) {
F g_(g);
g_.resize(2 * m), atcoder::internal::butterfly(g_);
for (int i = 0; i < 2 * m; ++i) g_[i] *= g_[i] * f[i];
atcoder::internal::butterfly_inv(g_);
T iz = T(-2 * m).inv();
g_ *= iz;
g.insert(g.end(), g_.begin() + m / 2, g_.begin() + m);
}
F t((*this).begin(), (*this).begin() + m);
t.deriv_inplace();
{
F r{h_drv.begin(), h_drv.begin() + m - 1};
mult_f(r);
for (int i = 0; i < m; ++i) t[i] -= r[i] + r[m + i];
}
t.insert(t.begin(), t.back());
t.pop_back();
t *= g;
F v((*this).begin() + m, (*this).begin() + std::min(n, 2 * m));
v.resize(m);
t.insert(t.begin(), m - 1, 0);
t.push_back(0);
t.integral_inplace();
for (int i = 0; i < m; ++i) v[i] -= t[m + i];
mult_f(v);
for (int i = 0; i < std::min(n - m, m); ++i) (*this)[m + i] = v[i];
}
return *this;
}
F exp() const { return F(*this).exp_inplace(); }
F& pow_inplace(long long k) {
int n = (*this).size(), l = 0;
assert(k >= 0);
if (!k) {
for (int i = 0; i < n; ++i) (*this)[i] = !i;
return *this;
}
while (l < n and (*this)[l] == 0) ++l;
if (l > (n - 1) / k or l == n) return *this = F(n);
T c = (*this)[l];
(*this).erase((*this).begin(), (*this).begin() + l);
(*this) /= c;
(*this).log_inplace();
(*this).resize(n - l * k);
(*this) *= k;
(*this).exp_inplace();
(*this) *= c.pow(k);
(*this).insert((*this).begin(), l * k, 0);
return *this;
}
F pow(const long long k) const { return F(*this).pow_inplace(); }
void spacemul(vector<pair<int, T>> g) {
int n = (*this).size();
auto [d, c] = g.front();
if (d == 0)
g.erase(g.begin());
else
c = 0;
for (int i = n - 1; i >= 0; i--) {
(*this)[i] *= c;
for (auto& [j, b] : g) {
if (j > i) break;
(*this)[i] += (*this)[i - j] * b;
}
}
}
void spacediv(vector<pair<int, T>> g) {
int n = (*this).size();
auto [d, c] = g.front();
assert(d == 0 && c != T(0));
T ic = c.inv();
g.erase(g.begin());
for (int i = 0; i < n; i++) {
for (auto& [j, b] : g) {
if (j > i) break;
(*this)[i] -= (*this)[i - j] * b;
}
(*this)[i] *= ic;
}
}
};
using fps = FormalPowerSeries<atcoder::modint998244353, FAST>;
mint g(ll a, ll b) {
if (a == 1) {
return mint(1);
}
if (b == 1) {
return mint(1) / mint(2);
}
if (a == b) {
return mint(1) / mint(mint(2).pow(a - 1) * k[a - 1]);
}
return mint(1) / mint(mint(2).pow(b)) * (mint(2) / mint(k[b - 1]) - mint(1) / mint(k[b]));
}
int main() {
Scanner scanner;
gbjsmzmfuuvdf();
com();
int n;
n = in;
assert(2 <= n && n <= 100000);
mint h = mint(4).pow(n - 1);
for (int i = 1; i <= n - 1; i++) {
h *= i;
}
vector<mint> a(n), b(n);
lazy_segtree<S, op, e, F, mapping, composition, id> seg(n);
for (int i = 0; i < n; i++) {
seg.apply(i, g(n - i, 1));
}
for (int i = 2; i < n; i++) {
seg.apply(i - 1, n - 1, g(n, i));
}
for (int i = 2; i <= n; i++) {
seg.apply(n - 1, g(i, i));
}
for (int i = 0; i < n; i++) {
int x;
x = in;
assert(0 <= x && x <= 2);
a[i] = x;
}
mint ans = 0;
for (int i = 0; i < n; i++) {
ans += a[i] * seg.prod(i, i + 1).value;
b[i] = seg.prod(i, i + 1).value;
}
for (int i = n - 1; i >= 0; i--) {
a.push_back(a[i]);
b.push_back(b[i]);
}
n *= 2;
rever(b);
vector<mint> c = convolution(a, b);
for (int i = n; i < int(c.size()); i++) {
c[i % n] += c[i];
}
c.resize(n);
rever(c);
fps f(n);
f[0] = 1;
cout << (c[0] * h / mint(2)).val() << "\n";
int k = min(int(sqrt(n * log(n))), int(n));
vector<vector<pair<int, mint>>> F(k + 1);
vector<mint> p;
F[0] = {{0, mint(1)}};
for (int i = 1; i <= n / 2; i++) {
ll v = i % k;
if (v == i) {
__gnu_pbds::gp_hash_table<int, mint> M;
for (int j = 0; j < int(F[i - 1].size()); j++) {
M[F[i - 1][j].fi] += (n / 2 - 3) * F[i - 1][j].se;
M[(F[i - 1][j].fi - 1 + n) % n] += F[i - 1][j].se;
M[(F[i - 1][j].fi + 1) % n] += F[i - 1][j].se;
}
for (auto e : M) {
F[i].push_back({e.fi, e.se});
}
mint ans = 0;
for (int j = 0; j < int(F[i].size()); j++) {
ans += F[i][j].se * c[F[i][j].fi];
}
cout << (ans * h / mint(2)).val() << endl;
} else {
mint ans = 0;
for (int j = 0; j < int(F[v].size()); j++) {
ans += F[v][j].se * c[F[v][j].fi];
}
cout << (ans * h / mint(2)).val() << "\n";
}
if (i % k == k - 1) {
if (int(p.size()) == 0) {
__gnu_pbds::gp_hash_table<int, mint> M;
for (int j = 0; j < int(F[k - 1].size()); j++) {
M[F[k - 1][j].fi] += (n / 2 - 3) * F[k - 1][j].se;
M[(F[k - 1][j].fi - 1 + n) % n] += F[k - 1][j].se;
M[(F[k - 1][j].fi + 1) % n] += F[k - 1][j].se;
}
vector<pair<int, int>> S(int(M.size()));
int now = 0;
for (auto e : M) {
if (e.fi >= n / 2) {
S[now] = {e.fi - n, e.se.val()};
} else {
S[now] = {e.fi, e.se.val()};
}
now++;
}
sor(S);
for (int j = 0; j < int(S.size()); j++) {
p.push_back(S[j].se);
}
}
auto d = convolution(c, p);
for (int j = 0; j < int(c.size()); j++) {
c[j] = 0;
}
for (int j = 0; j < int(d.size()); j++) {
c[(j - k + n) % n] += d[j];
}
}
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0