結果
問題 | No.1574 Swap and Repaint |
ユーザー | KoD |
提出日時 | 2021-06-20 17:26:14 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 5,544 ms / 10,000 ms |
コード長 | 17,334 bytes |
コンパイル時間 | 8,298 ms |
コンパイル使用メモリ | 338,084 KB |
実行使用メモリ | 43,416 KB |
最終ジャッジ日時 | 2024-10-03 12:24:27 |
合計ジャッジ時間 | 35,133 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 4 ms
5,248 KB |
testcase_01 | AC | 4 ms
5,248 KB |
testcase_02 | AC | 4 ms
5,248 KB |
testcase_03 | AC | 4 ms
5,248 KB |
testcase_04 | AC | 4 ms
5,248 KB |
testcase_05 | AC | 4 ms
5,248 KB |
testcase_06 | AC | 3 ms
5,376 KB |
testcase_07 | AC | 4 ms
5,248 KB |
testcase_08 | AC | 4 ms
5,248 KB |
testcase_09 | AC | 8 ms
5,632 KB |
testcase_10 | AC | 5 ms
5,376 KB |
testcase_11 | AC | 5 ms
5,376 KB |
testcase_12 | AC | 9 ms
5,504 KB |
testcase_13 | AC | 7 ms
5,504 KB |
testcase_14 | AC | 7 ms
5,504 KB |
testcase_15 | AC | 9 ms
5,632 KB |
testcase_16 | AC | 4 ms
5,376 KB |
testcase_17 | AC | 5 ms
5,504 KB |
testcase_18 | AC | 820 ms
15,808 KB |
testcase_19 | AC | 5,544 ms
41,800 KB |
testcase_20 | AC | 507 ms
16,768 KB |
testcase_21 | AC | 357 ms
14,808 KB |
testcase_22 | AC | 446 ms
13,796 KB |
testcase_23 | AC | 71 ms
7,676 KB |
testcase_24 | AC | 1,488 ms
36,156 KB |
testcase_25 | AC | 1,401 ms
22,664 KB |
testcase_26 | AC | 24 ms
6,144 KB |
testcase_27 | AC | 335 ms
12,216 KB |
testcase_28 | AC | 1,821 ms
43,288 KB |
testcase_29 | AC | 1,915 ms
43,292 KB |
testcase_30 | AC | 1,856 ms
43,284 KB |
testcase_31 | AC | 1,865 ms
43,288 KB |
testcase_32 | AC | 1,872 ms
43,292 KB |
testcase_33 | AC | 1,858 ms
43,288 KB |
testcase_34 | AC | 1,805 ms
43,292 KB |
testcase_35 | AC | 1,799 ms
43,416 KB |
ソースコード
#include <bits/extc++.h> #include <unistd.h> using namespace std; #if __has_include(<atcoder/all>) #include <atcoder/all> using namespace atcoder; #endif using ll = long long; using ld = long double; using ull = long long; #define REP3(i, m, n) for (int i = (m); (i) < int(n); ++(i)) #define ALL(x) begin(x), end(x) #define all(s) (s).begin(), (s).end() #define rep2(i, m, n) for (int i = (m); i < (n); ++i) #define rep(i, n) rep2(i, 0, n) #define drep2(i, m, n) for (int i = (m)-1; i >= (n); --i) #define drep(i, n) drep2(i, n, 0) #define rever(vec) reverse(vec.begin(), vec.end()) #define sor(vec) sort(vec.begin(), vec.end()) #define fi first #define se second #define P pair<ll, ll> #define REP(i, n) for (int i = 0; i < (n); ++i) #define in scanner.read_int() const ll mod = 998244353; // const ll mod = 1000000007; const ll inf = 2000000000000000000ll; static const long double pi = 3.141592653589793; template <class T> void vcin(vector<T>& n) { for (int i = 0; i < int(n.size()); i++) cin >> n[i]; } template <class T> void vcout(vector<T>& n) { for (int i = 0; i < int(n.size()); i++) { cout << n[i] << " "; } cout << endl; } void YesNo(bool a) { if (a) { cout << "Yes" << endl; } else { cout << "No" << endl; } } void YESNO(bool a) { if (a) { cout << "YES" << endl; } else { cout << "NO" << endl; } } template <class T, class U> void chmax(T& t, const U& u) { if (t < u) t = u; } template <class T, class U> void chmin(T& t, const U& u) { if (t > u) t = u; } template <class T> void ifmin(T t, T u) { if (t > u) { cout << -1 << endl; } else { cout << t << endl; } } template <class T> void ifmax(T t, T u) { if (t > u) { cout << -1 << endl; } else { cout << t << endl; } } template <typename T, typename... Args> auto make_vector(T x, int arg, Args... args) { if constexpr (sizeof...(args) == 0) return vector<T>(arg, x); else return vector(arg, make_vector<T>(x, args...)); } ll modPow(ll a, ll n, ll mod) { ll ret = 1; ll p = a % mod; while (n) { if (n & 1) ret = ret * p % mod; p = p * p % mod; n >>= 1; } return ret; } void gbjsmzmfuuvdf() { ios::sync_with_stdio(false); std::cin.tie(nullptr); cout << fixed << setprecision(20); } class Scanner { vector<char> buffer; ssize_t n_written; ssize_t n_read; public: Scanner() : buffer(1024 * 1024) { do_read(); } int64_t read_int() { int64_t ret = 0, sgn = 1; int ch = current_char(); while (isspace(ch)) { ch = next_char(); } if (ch == '-') { sgn = -1; ch = next_char(); } for (; isdigit(ch); ch = next_char()) ret = (ret * 10) + (ch - '0'); return sgn * ret; } private: void do_read() { ssize_t r = read(0, &buffer[0], buffer.size()); if (r < 0) { throw runtime_error(strerror(errno)); } n_written = r; n_read = 0; } inline int next_char() { ++n_read; if (n_read == n_written) { do_read(); } return current_char(); } inline int current_char() { return (n_read == n_written) ? EOF : buffer[n_read]; } }; using mint = modint998244353; struct S { mint value; int size; }; using F = mint; S op(S a, S b) { return {a.value + b.value, a.size + b.size}; } S e() { return {mint(0), 1}; } S mapping(F f, S x) { return {x.value + x.size * f, x.size}; } F composition(F f, F g) { return f + g; } F id() { return mint(0); } mint k[200100]; void com() { k[0] = 1; for (int i = 1; i < 200100; i++) { k[i] = k[i - 1] * i; } } enum Mode { FAST = 1, NAIVE = -1, }; template <class T, Mode mode = FAST> struct FormalPowerSeries : std::vector<T> { using std::vector<T>::vector; using std::vector<T>::size; using std::vector<T>::resize; using F = FormalPowerSeries; F& operator+=(const F& g) { for (int i = 0; i < int(min((*this).size(), g.size())); i++) { (*this)[i] += g[i]; } return *this; } F& operator+=(const T& t) { assert(int((*this).size())); (*this)[0] += t; return *this; } F& operator-=(const F& g) { for (int i = 0; i < int(min((*this).size(), g.size())); i++) { (*this)[i] -= g[i]; } return *this; } F& operator-=(const T& t) { assert(int((*this).size())); (*this)[0] -= t; return *this; } F& operator*=(const T& g) { for (int i = 0; i < int((*this).size()); i++) { (*this)[i] *= g; } return *this; } F& operator/=(const T& g) { T div = g.inv(); for (int i = 0; i < int((*this).size()); i++) { (*this)[i] *= div; } return *this; } F& operator<<=(const int d) { int n = (*this).size(); (*this).insert((*this).begin(), d, 0); (*this).resize(n); return *this; } F& operator>>=(const int d) { int n = (*this).size(); (*this).erase((*this).begin(), (*this).begin() + min(n, d)); (*this).resize(n); return *this; } F& operator=(const std::vector<T>& v) { int n = (*this).size(); for (int i = 0; i < n; ++i) (*this)[i] = v[i]; return *this; } F operator-() const { F ret = *this; return ret * -1; } F& operator*=(const F& g) { if (mode == FAST) { int n = (*this).size(); auto tmp = atcoder::convolution(*this, g); for (int i = 0; i < n; ++i) { (*this)[i] = tmp[i]; } return *this; } else { int n = (*this).size(), m = g.size(); for (int i = n - 1; i >= 0; --i) { (*this)[i] *= g[0]; for (int j = 1; j < std::min(i + 1, m); j++) (*this)[i] += (*this)[i - j] * g[j]; } return *this; } } F& operator/=(const F& g) { if (mode == FAST) { int n = (*this).size(); (*this) = atcoder::convolution(*this, g.inv()); return *this; } else { assert(g[0] != T(0)); T ig0 = g[0].inv(); int n = (*this).size(), m = g.size(); for (int i = 0; i < n; ++i) { for (int j = 1; j < std::min(i + 1, m); ++j) (*this)[i] -= (*this)[i - j] * g[j]; (*this)[i] *= ig0; } return *this; } } F& operator%=(const F& g) { return *this -= *this / g * g; } F operator*(const T& g) const { return F(*this) *= g; } F operator-(const T& g) const { return F(*this) -= g; } F operator*(const F& g) const { return F(*this) *= g; } F operator-(const F& g) const { return F(*this) -= g; } F operator+(const F& g) const { return F(*this) += g; } F operator/(const F& g) const { return F(*this) /= g; } F operator%(const F& g) const { return F(*this) %= g; } F operator<<(const int d) const { return F(*this) <<= d; } F operator>>(const int d) const { return F(*this) >>= d; } void onemul(const int d, const T c) { int n = (*this).size(); for (int i = n - d - 1; i >= 0; i--) { (*this)[i + d] += (*this)[i] * c; } } void onediv(const int d, const T c) { int n = (*this).size(); for (int i = 0; i < n - d; i++) { (*this)[i + d] -= (*this)[i] * c; } } T eval(const T& t) const { int n = (*this).size(); T res = 0, tmp = 1; for (int i = 0; i < n; ++i) { res += (*this)[i] * tmp, tmp *= t; } return res; } F inv(int deg = -1) const { int n = (*this).size(); assert(mode == FAST and n and (*this)[0] != 0); if (deg == -1) deg = n; assert(deg > 0); F res{(*this)[0].inv()}; while (int(res.size()) < deg) { int m = res.size(); F f((*this).begin(), (*this).begin() + std::min(n, m * 2)), r(res); f.resize(m * 2), atcoder::internal::butterfly(f); r.resize(m * 2), atcoder::internal::butterfly(r); for (int i = 0; i < m * 2; ++i) f[i] *= r[i]; atcoder::internal::butterfly_inv(f); f.erase(f.begin(), f.begin() + m); f.resize(m * 2), atcoder::internal::butterfly(f); for (int i = 0; i < m * 2; ++i) f[i] *= r[i]; atcoder::internal::butterfly_inv(f); T iz = T(m * 2).inv(); iz *= -iz; for (int i = 0; i < m; ++i) f[i] *= iz; res.insert(res.end(), f.begin(), f.begin() + m); } res.resize(deg); return res; } F& diff_inplace() { int n = (*this).size(); for (int i = 1; i < n; ++i) (*this)[i - 1] = (*this)[i] * i; (*this)[n - 1] = 0; return *this; } F diff() const { F(*this).diff_inplace(); } F& integral_inplace() { int n = (*this).size(), mod = T::mod(); std::vector<T> inv(n); { inv[1] = 1; for (int i = 2; i < n; ++i) inv[i] = T(mod) - inv[mod % i] * (mod / i); } for (int i = n - 2; i >= 0; --i) (*this)[i + 1] = (*this)[i] * inv[i + 1]; (*this)[0] = 0; return *this; } F integral() const { return F(*this).integral_inplace(); } F& log_inplace() { int n = (*this).size(); assert(n and (*this)[0] == 1); F f_inv = (*this).inv(); (*this).diff_inplace(); (*this) *= f_inv; (*this).integral_inplace(); return *this; } F log() const { return F(*this).log_inplace(); } F& deriv_inplace() { int n = (*this).size(); assert(n); for (int i = 2; i < n; ++i) (*this)[i] *= i; (*this).erase((*this).begin()); (*this).push_back(0); return *this; } F deriv() const { return F(*this).deriv_inplace(); } F& exp_inplace() { int n = (*this).size(); assert(n and (*this)[0] == 0); F g{1}; (*this)[0] = 1; F h_drv((*this).deriv()); for (int m = 1; m < n; m *= 2) { F f((*this).begin(), (*this).begin() + m); f.resize(2 * m), atcoder::internal::butterfly(f); auto mult_f = [&](F& p) { p.resize(2 * m); atcoder::internal::butterfly(p); for (int i = 0; i < 2 * m; ++i) p[i] *= f[i]; atcoder::internal::butterfly_inv(p); p /= 2 * m; }; if (m > 1) { F g_(g); g_.resize(2 * m), atcoder::internal::butterfly(g_); for (int i = 0; i < 2 * m; ++i) g_[i] *= g_[i] * f[i]; atcoder::internal::butterfly_inv(g_); T iz = T(-2 * m).inv(); g_ *= iz; g.insert(g.end(), g_.begin() + m / 2, g_.begin() + m); } F t((*this).begin(), (*this).begin() + m); t.deriv_inplace(); { F r{h_drv.begin(), h_drv.begin() + m - 1}; mult_f(r); for (int i = 0; i < m; ++i) t[i] -= r[i] + r[m + i]; } t.insert(t.begin(), t.back()); t.pop_back(); t *= g; F v((*this).begin() + m, (*this).begin() + std::min(n, 2 * m)); v.resize(m); t.insert(t.begin(), m - 1, 0); t.push_back(0); t.integral_inplace(); for (int i = 0; i < m; ++i) v[i] -= t[m + i]; mult_f(v); for (int i = 0; i < std::min(n - m, m); ++i) (*this)[m + i] = v[i]; } return *this; } F exp() const { return F(*this).exp_inplace(); } F& pow_inplace(long long k) { int n = (*this).size(), l = 0; assert(k >= 0); if (!k) { for (int i = 0; i < n; ++i) (*this)[i] = !i; return *this; } while (l < n and (*this)[l] == 0) ++l; if (l > (n - 1) / k or l == n) return *this = F(n); T c = (*this)[l]; (*this).erase((*this).begin(), (*this).begin() + l); (*this) /= c; (*this).log_inplace(); (*this).resize(n - l * k); (*this) *= k; (*this).exp_inplace(); (*this) *= c.pow(k); (*this).insert((*this).begin(), l * k, 0); return *this; } F pow(const long long k) const { return F(*this).pow_inplace(); } void spacemul(vector<pair<int, T>> g) { int n = (*this).size(); auto [d, c] = g.front(); if (d == 0) g.erase(g.begin()); else c = 0; for (int i = n - 1; i >= 0; i--) { (*this)[i] *= c; for (auto& [j, b] : g) { if (j > i) break; (*this)[i] += (*this)[i - j] * b; } } } void spacediv(vector<pair<int, T>> g) { int n = (*this).size(); auto [d, c] = g.front(); assert(d == 0 && c != T(0)); T ic = c.inv(); g.erase(g.begin()); for (int i = 0; i < n; i++) { for (auto& [j, b] : g) { if (j > i) break; (*this)[i] -= (*this)[i - j] * b; } (*this)[i] *= ic; } } }; using fps = FormalPowerSeries<atcoder::modint998244353, FAST>; mint g(ll a, ll b) { if (a == 1) { return mint(1); } if (b == 1) { return mint(1) / mint(2); } if (a == b) { return mint(1) / mint(mint(2).pow(a - 1) * k[a - 1]); } return mint(1) / mint(mint(2).pow(b)) * (mint(2) / mint(k[b - 1]) - mint(1) / mint(k[b])); } int main() { Scanner scanner; gbjsmzmfuuvdf(); com(); int n; n = in; assert(2 <= n && n <= 100000); mint h = mint(4).pow(n - 1); for (int i = 1; i <= n - 1; i++) { h *= i; } vector<mint> a(n), b(n); lazy_segtree<S, op, e, F, mapping, composition, id> seg(n); for (int i = 0; i < n; i++) { seg.apply(i, g(n - i, 1)); } for (int i = 2; i < n; i++) { seg.apply(i - 1, n - 1, g(n, i)); } for (int i = 2; i <= n; i++) { seg.apply(n - 1, g(i, i)); } for (int i = 0; i < n; i++) { int x; x = in; assert(0 <= x && x <= 2); a[i] = x; } mint ans = 0; for (int i = 0; i < n; i++) { ans += a[i] * seg.prod(i, i + 1).value; b[i] = seg.prod(i, i + 1).value; } for (int i = n - 1; i >= 0; i--) { a.push_back(a[i]); b.push_back(b[i]); } n *= 2; rever(b); vector<mint> c = convolution(a, b); for (int i = n; i < int(c.size()); i++) { c[i % n] += c[i]; } c.resize(n); rever(c); fps f(n); f[0] = 1; cout << (c[0] * h / mint(2)).val() << "\n"; int k = min(int(sqrt(n * log(n))), int(n)); vector<vector<pair<int, mint>>> F(k + 1); vector<mint> p; F[0] = {{0, mint(1)}}; for (int i = 1; i <= n / 2; i++) { ll v = i % k; if (v == i) { __gnu_pbds::gp_hash_table<int, mint> M; for (int j = 0; j < int(F[i - 1].size()); j++) { M[F[i - 1][j].fi] += (n / 2 - 3) * F[i - 1][j].se; M[(F[i - 1][j].fi - 1 + n) % n] += F[i - 1][j].se; M[(F[i - 1][j].fi + 1) % n] += F[i - 1][j].se; } for (auto e : M) { F[i].push_back({e.fi, e.se}); } mint ans = 0; for (int j = 0; j < int(F[i].size()); j++) { ans += F[i][j].se * c[F[i][j].fi]; } cout << (ans * h / mint(2)).val() << endl; } else { mint ans = 0; for (int j = 0; j < int(F[v].size()); j++) { ans += F[v][j].se * c[F[v][j].fi]; } cout << (ans * h / mint(2)).val() << "\n"; } if (i % k == k - 1) { if (int(p.size()) == 0) { __gnu_pbds::gp_hash_table<int, mint> M; for (int j = 0; j < int(F[k - 1].size()); j++) { M[F[k - 1][j].fi] += (n / 2 - 3) * F[k - 1][j].se; M[(F[k - 1][j].fi - 1 + n) % n] += F[k - 1][j].se; M[(F[k - 1][j].fi + 1) % n] += F[k - 1][j].se; } vector<pair<int, int>> S(int(M.size())); int now = 0; for (auto e : M) { if (e.fi >= n / 2) { S[now] = {e.fi - n, e.se.val()}; } else { S[now] = {e.fi, e.se.val()}; } now++; } sor(S); for (int j = 0; j < int(S.size()); j++) { p.push_back(S[j].se); } } auto d = convolution(c, p); for (int j = 0; j < int(c.size()); j++) { c[j] = 0; } for (int j = 0; j < int(d.size()); j++) { c[(j - k + n) % n] += d[j]; } } } }