結果
| 問題 |
No.1516 simple 門松列 problem Re:MASTER
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-06-24 02:39:18 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 723 ms / 6,000 ms |
| コード長 | 12,386 bytes |
| コンパイル時間 | 2,594 ms |
| コンパイル使用メモリ | 194,680 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-06-25 02:49:41 |
| 合計ジャッジ時間 | 6,316 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 19 |
ソースコード
#pragma GCC optimize ("O3")
#include <bits/stdc++.h>
using namespace std;
using ll = long long int;
#define all(v) (v).begin(),(v).end()
#define repeat(cnt,l) for(typename remove_const<typename remove_reference<decltype(l)>::type>::type cnt={};(cnt)<(l);++(cnt))
#define rrepeat(cnt,l) for(auto cnt=(l)-1;0<=(cnt);--(cnt))
#define iterate(cnt,b,e) for(auto cnt=(b);(cnt)!=(e);++(cnt))
#define diterate(cnt,b,e) for(auto cnt=(b);(cnt)!=(e);--(cnt))
const long long MD = 998244353ll; const long double PI = 3.1415926535897932384626433832795L;
template<typename T1, typename T2> inline ostream& operator <<(ostream &o, const pair<T1, T2> p) { o << '(' << p.first << ':' << p.second << ')'; return o; }
template<typename T> inline T& chmax(T& to, const T& val) { return to = max(to, val); }
template<typename T> inline T& chmin(T& to, const T& val) { return to = min(to, val); }
void bye(string s, int code = 0) { cout << s << endl; exit(code); }
mt19937_64 randdev(8901016);
template<typename T, typename Random = decltype(randdev), typename enable_if<is_integral<T>::value>::type* = nullptr>
inline T rand(T l, T h, Random& rand = randdev) { return uniform_int_distribution<T>(l, h)(rand); }
template<typename T, typename Random = decltype(randdev), typename enable_if<is_floating_point<T>::value>::type* = nullptr>
inline T rand(T l, T h, Random& rand = randdev) { return uniform_real_distribution<T>(l, h)(rand); }template<typename T>
static ostream& operator<<(ostream& o, const std::vector<T>& v) {
o << "[ "; for(const auto& e : v) o<<e<<' ';
return o << ']';
}
template <typename I>
struct MyRangeFormat{ I b,e; MyRangeFormat(I _b, I _e):b(_b),e(_e){} };
template<typename I>
static ostream& operator<<(ostream& o, const MyRangeFormat<I>& f) {
o << "[ "; iterate(i,f.b,f.e) o<<*i<<' ';
return o << ']';
}
template <typename I>
struct MyMatrixFormat{
const I& p; long long n, m;
MyMatrixFormat(const I& _p, long long _n, long long _m):p(_p),n(_n),m(_m){}
};
template<typename I>
static ostream& operator<<(ostream& o, const MyMatrixFormat<I>& f) {
o<<'\n';
repeat(i,(f.n)) {
repeat(j,f.m) o<<f.p[i][j]<<' ';
o<<'\n';
}
return o;
}
struct LOG_t { ~LOG_t() { cout << endl; } };
#define LOG (LOG_t(),cout<<'L'<<__LINE__<<": ")
#define FMTA(m,w) (MyRangeFormat<decltype(m+0)>(m,m+w))
#define FMTR(b,e) (MyRangeFormat<decltype(e)>(b,e))
#define FMTV(v) FMTR(v.begin(),v.end())
#define FMTM(m,h,w) (MyMatrixFormat<decltype(m+0)>(m,h,w))
#if defined(_WIN32) || defined(_WIN64)
#define getc_x _getc_nolock
#define putc_x _putc_nolock
#elif defined(__GNUC__)
#define getc_x getc_unlocked
#define putc_x putc_unlocked
#else
#define getc_x getc
#define putc_x putc
#endif
class MaiScanner {
FILE* fp_;
constexpr bool isvisiblechar(char c) noexcept { return (0x21<=(c)&&(c)<=0x7E); }
public:
inline MaiScanner(FILE* fp):fp_(fp){}
template<typename T> void input_integer(T& var) noexcept {
var = 0; T sign = 1;
int cc = getc_x(fp_);
for (; cc < '0' || '9' < cc; cc = getc_x(fp_))
if (cc == '-') sign = -1;
for (; '0' <= cc && cc <= '9'; cc = getc_x(fp_))
var = (var << 3) + (var << 1) + cc - '0';
var = var * sign;
}
inline int c() noexcept { return getc_x(fp_); }
template<typename T, typename enable_if<is_integral<T>::value, nullptr_t>::type = nullptr>
inline MaiScanner& operator>>(T& var) noexcept { input_integer<T>(var); return *this; }
inline MaiScanner& operator>>(string& var) {
int cc = getc_x(fp_);
for (; !isvisiblechar(cc); cc = getc_x(fp_));
for (; isvisiblechar(cc); cc = getc_x(fp_))
var.push_back(cc);
return *this;
}
template<typename IT> inline void in(IT begin, IT end) { for (auto it = begin; it != end; ++it) *this >> *it; }
};
class MaiPrinter {
FILE* fp_;
public:
inline MaiPrinter(FILE* fp):fp_(fp){}
template<typename T>
void output_integer(T var) noexcept {
if (var == 0) { putc_x('0', fp_); return; }
if (var < 0)
putc_x('-', fp_),
var = -var;
char stack[32]; int stack_p = 0;
while (var)
stack[stack_p++] = '0' + (var % 10),
var /= 10;
while (stack_p)
putc_x(stack[--stack_p], fp_);
}
inline MaiPrinter& operator<<(char c) noexcept { putc_x(c, fp_); return *this; }
template<typename T, typename enable_if<is_integral<T>::value, nullptr_t>::type = nullptr>
inline MaiPrinter& operator<<(T var) noexcept { output_integer<T>(var); return *this; }
inline MaiPrinter& operator<<(char* str_p) noexcept { while (*str_p) putc_x(*(str_p++), fp_); return *this; }
inline MaiPrinter& operator<<(const string& str) {
const char* p = str.c_str();
const char* l = p + str.size();
while (p < l) putc_x(*p++, fp_);
return *this;
}
template<typename IT> void join(IT begin, IT end, char sep = ' ') { for (bool b = 0; begin != end; ++begin, b = 1) b ? *this << sep << *begin : *this << *begin; }
};
MaiScanner scanner(stdin);
MaiPrinter printer(stdout);
class llmod {
private:
using value_type = long long;
value_type val_;
// inline ll cut(ll v) const { return ((v%MOD) + MOD) % MOD; } // safe
public:
static const value_type MOD = MD; // <=
llmod() : val_(0) {}
llmod(value_type num) : val_(((num % MOD) + MOD) % MOD) {}
inline operator value_type() const { return val_; }
inline value_type operator*() const { return val_; }
inline llmod& operator=(const llmod& lm) {
val_ = lm.val_;
return *this;
}
inline llmod& operator=(value_type v) {
val_ = (v) % MOD;
return *this;
}
inline llmod& operator+=(value_type v) {
val_ = (val_ + v) % MOD;
return *this;
}
inline llmod& operator+=(const llmod& l) {
val_ = (val_ + l.val_) % MOD;
return *this;
}
inline llmod& operator-=(value_type v) {
val_ = (val_ - v + MOD) % MOD;
return *this;
}
inline llmod& operator-=(const llmod& l) {
val_ = (val_ - l.val_ + MOD) % MOD;
return *this;
}
inline llmod& operator*=(value_type v) {
val_ = (val_ * v) % MOD;
return *this;
}
inline llmod& operator*=(const llmod& l) {
val_ = (val_ * l.val_) % MOD;
return *this;
}
inline llmod& operator++() {
val_ = (val_ + 1) % MOD;
return *this;
}
inline llmod operator++(int) {
llmod t = *this;
val_ = (val_ + 1) % MOD;
return t;
}
inline llmod& justify() {
val_ = ((val_ % MOD) + MOD) % MOD;
return *this;
}
friend llmod pow(llmod, long long);
};
inline std::ostream& operator<<(std::ostream& os, const llmod& l) {
os << *l;
return os;
}
inline llmod operator+(llmod t, const llmod& r) {
return t += r;
}
inline llmod operator-(llmod t, const llmod& r) {
return t -= r;
}
inline llmod operator*(llmod t, const llmod& r) {
return t *= r;
}
// MEMO : 逆元...pow(n,MD-2)
llmod pow(llmod x, long long p) {
llmod::value_type y = 1;
llmod::value_type xval = x.justify();
while (0 < p) {
if (p & 1)
y = (xval * y) % llmod::MOD;
xval = (xval * xval) % llmod::MOD;
p >>= 1;
}
return llmod(y);
}
inline llmod& operator/=(llmod& l, const llmod& r) {
return l *= pow(r, llmod::MOD - 2);
}
template <typename T, typename Container = valarray<T>>
// using T = double;
class Matrix {
public:
size_t height_, width_;
Container data_;
Matrix(size_t height = 1, size_t width = 1)
: height_(height), width_(width), data_(height * width) {}
template <typename V>
Matrix(size_t height, size_t width, const V& data)
: height_(height), width_(width), data_(data) {}
Matrix(size_t height, size_t width, initializer_list<T> init)
: height_(height), width_(width), data_(init) {}
static Matrix<T> makeDiag(size_t n, T val) {
Matrix<T> mat(n, n);
for (size_t i = 0; i < n; ++i)
mat(i, i) = val;
return mat;
}
inline T& operator()(size_t y, size_t x) { return data_[y * width_ + x]; }
inline T operator()(size_t y, size_t x) const { return data_[y * width_ + x]; }
inline T& operator[](size_t i) { return data_[i]; }
inline T operator[](size_t i) const { return data_[i]; }
inline void resize(size_t h, size_t w) {
height_ = h;
width_ = w;
data_.resize(h * w);
}
inline void resize(size_t h, size_t w, T val) {
height_ = h;
width_ = w;
data_.resize(h * w, val);
}
inline void fill(T val) { data_ = val; }
void transpose() {
for (size_t y = 0; y < height_; ++y)
for (size_t x = y + 1; x < width_; ++x)
swap(operator()(y, x), operator()(x, y));
}
Matrix<T> transposed() const {
auto m = *this;
m.transpose();
return m;
}
void print(ostream& os) {
os << "- - -" << endl; // << setprecision(3)
for (size_t y = 0; y < height_; ++y) {
for (size_t x = 0; x < width_; ++x) {
os << setw(7) << operator()(y, x) << ' ';
}
os << endl;
}
}
};
template <typename T>
inline ostream& operator<<(ostream& os, Matrix<T> mat) {
mat.print(os);
return os;
}
template <typename T>
Matrix<T> multiply(const Matrix<T>& mat1, const Matrix<T>& mat2) {
assert(mat1.width_ == mat2.height_);
Matrix<T> result(mat1.height_, mat2.width_);
for (size_t i = 0; i < mat1.height_; ++i)
for (size_t j = 0; j < mat2.width_; ++j)
for (size_t k = 0; k < mat1.width_; ++k)
result(i, j) += mat1(i, k) * mat2(k, j);
return result;
}
template <typename T, typename V>
V multiply(const Matrix<T>& mat1, const V& vec2) {
assert(mat1.width_ == vec2.size());
V result(mat1.height_);
for (size_t i = 0, j; i < mat1.height_; ++i)
for (j = 0; j < mat1.width_; ++j)
result[i] += mat1(i, j) * vec2[j];
return result;
}
template <typename T>
inline Matrix<T>& operator+=(Matrix<T>& mat, T val) {
mat.data_ += val;
return mat;
}
template <typename T>
inline Matrix<T>& operator-=(Matrix<T>& mat, T val) {
mat.data_ -= val;
return mat;
}
template <typename T>
inline Matrix<T>& operator*=(Matrix<T>& mat, T val) {
mat.data_ *= val;
return mat;
}
template <typename T>
inline Matrix<T>& operator/=(Matrix<T>& mat, T val) {
mat.data_ /= val;
return mat;
}
template <typename T>
inline Matrix<T>& operator^=(Matrix<T>& mat, T val) {
mat.data_ ^= val;
return mat;
}
template <typename T>
inline Matrix<T>& operator+=(Matrix<T>& mat1, const Matrix<T>& mat2) {
mat1.data_ += mat2.data_;
return mat1;
}
template <typename T>
inline Matrix<T> operator+(Matrix<T>& mat1, const Matrix<T>& mat2) {
return Matrix<T>(mat1.height_, mat1.width_, mat1.data_ + mat2.data_);
}
template <typename T>
inline Matrix<T>& operator-=(Matrix<T>& mat1, const Matrix<T>& mat2) {
mat1.data_ -= mat2.data_;
return mat1;
}
template <typename T>
inline Matrix<T> operator-(Matrix<T>& mat1, const Matrix<T>& mat2) {
return Matrix<T>(mat1.height_, mat1.width_, mat1.data_ - mat2.data_);
}
template <typename T>
inline Matrix<T>& operator*=(Matrix<T>& mat1, const Matrix<T>& mat2) {
mat1 = multiply(mat1, mat2);
return mat1;
}
template <typename T>
inline Matrix<T> operator*(const Matrix<T>& mat1, const Matrix<T>& mat2) {
return multiply(mat1, mat2);
}
template <typename T, typename V>
inline V operator*(const Matrix<T>& mat1, const V& vec2) {
return multiply(mat1, vec2);
}
template <typename T>
Matrix<T> pow(Matrix<T> a, long long p) {
assert(a.height_ == a.width_);
auto b = Matrix<T>::makeDiag(a.height_, 1);
while (0 < p) {
if (p & 1)
b *= a;
a *= a;
p >>= 1;
}
return b;
}
//
ll N, K;
//
bool kado(int x, int y, int z) {
return (x!=z)&&((x<y&&y>z)||(x>y&&y<z));
}
void solve1() {
map<int, map<int, int>> idx;
{
int i = 0;
repeat(a1, K) {
repeat(a2, K) {
if (a1 == a2) continue;
idx[a1][a2] = i++;
}
}
}
int KK = K*K-K;
Matrix<llmod> mat(KK+KK, KK+KK);
Matrix<llmod> vec(KK+KK, 1);
vec.fill(1);
repeat(a1, K) {
repeat(a2, K) {
vec[KK+idx[a1][a2]] = a1+a2;
repeat(b, K) {
if (kado(a1,a2,b)) {
mat(idx[a2][b], idx[a1][a2]) = 1;
mat(KK+idx[a2][b], idx[a1][a2]) = b;
mat(KK+idx[a2][b], KK+idx[a1][a2]) = 1;
}
}
}
}
auto m2 = pow(mat, N-2);
auto v2 = m2*vec;
ll total1 = 0, total2 = 0;
repeat(i, KK) {
total1 += v2[i];
total1 %= MD;
}
repeat(i, KK) {
total2 += v2[KK+i];
total2 %= MD;
}
cout << total1 << " " << total2 << endl;
}
int main() {
cin >> N >> K;
solve1();
return 0;
}