結果

問題 No.1559 Next Rational
ユーザー tokusakurai
提出日時 2021-06-25 22:36:00
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 8 ms / 2,000 ms
コード長 6,923 bytes
コンパイル時間 2,016 ms
コンパイル使用メモリ 204,264 KB
最終ジャッジ日時 2025-01-22 12:26:26
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 15
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for(int i = 0; i < n; i++)
#define rep2(i, x, n) for(int i = x; i <= n; i++)
#define rep3(i, x, n) for(int i = x; i >= n; i--)
#define each(e, v) for(auto &e: v)
#define pb push_back
#define eb emplace_back
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;
const int MOD = 1000000007;
//const int MOD = 998244353;
const int inf = (1<<30)-1;
const ll INF = (1LL<<60)-1;
template<typename T> bool chmax(T &x, const T &y) {return (x < y)? (x = y, true) : false;};
template<typename T> bool chmin(T &x, const T &y) {return (x > y)? (x = y, true) : false;};
struct io_setup{
io_setup(){
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout << fixed << setprecision(15);
}
} io_setup;
template<int mod>
struct Mod_Int{
int x;
Mod_Int() : x(0) {}
Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
Mod_Int &operator += (const Mod_Int &p){
if((x += p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator -= (const Mod_Int &p){
if((x += mod - p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator *= (const Mod_Int &p){
x = (int) (1LL * x * p.x % mod);
return *this;
}
Mod_Int &operator /= (const Mod_Int &p){
*this *= p.inverse();
return *this;
}
Mod_Int &operator ++ () {return *this += Mod_Int(1);}
Mod_Int operator ++ (int){
Mod_Int tmp = *this;
++*this;
return tmp;
}
Mod_Int &operator -- () {return *this -= Mod_Int(1);}
Mod_Int operator -- (int){
Mod_Int tmp = *this;
--*this;
return tmp;
}
Mod_Int operator - () const {return Mod_Int(-x);}
Mod_Int operator + (const Mod_Int &p) const {return Mod_Int(*this) += p;}
Mod_Int operator - (const Mod_Int &p) const {return Mod_Int(*this) -= p;}
Mod_Int operator * (const Mod_Int &p) const {return Mod_Int(*this) *= p;}
Mod_Int operator / (const Mod_Int &p) const {return Mod_Int(*this) /= p;}
bool operator == (const Mod_Int &p) const {return x == p.x;}
bool operator != (const Mod_Int &p) const {return x != p.x;}
Mod_Int inverse() const{
assert(*this != Mod_Int(0));
return pow(mod-2);
}
Mod_Int pow(long long k) const{
Mod_Int now = *this, ret = 1;
for(; k > 0; k >>= 1, now *= now){
if(k&1) ret *= now;
}
return ret;
}
friend ostream &operator << (ostream &os, const Mod_Int &p){
return os << p.x;
}
friend istream &operator >> (istream &is, Mod_Int &p){
long long a;
is >> a;
p = Mod_Int<mod>(a);
return is;
}
};
using mint = Mod_Int<MOD>;
template<typename T>
struct Matrix{
vector<vector<T>> A;
Matrix(int m, int n) : A(m, vector<T>(n, 0)) {}
int height() const {return A.size();}
int width() const {return A.front().size();}
inline const vector<T> &operator [] (int k) const {return A[k];}
inline vector<T> &operator [] (int k) {return A[k];}
static Matrix I(int l){
Matrix ret(l, l);
for(int i = 0; i < l; i++) ret[i][i] = 1;
return ret;
}
Matrix &operator *= (const Matrix &B){
int m = height(), n = width(), p = B.width();
assert(n == B.height());
Matrix ret(m, p);
for(int i = 0; i < m; i++){
for(int k = 0; k < n; k++){
for(int j = 0; j < p; j++){
ret[i][j] += A[i][k]*B[k][j];
}
}
}
swap(A, ret.A);
return *this;
}
Matrix operator * (const Matrix &B) const {return Matrix(*this) *= B;}
Matrix pow(long long k) const{
int m = height(), n = width();
assert(m == n);
Matrix now = *this, ret = I(n);
for(; k > 0; k >>= 1, now *= now){
if(k&1) ret *= now;
}
return ret;
}
bool eq(const T &a, const T &b) const{
return a == b;
//return abs(a-b) <= EPS;
}
pair<int, T> row_reduction(vector<T> &b){ //()
int m = height(), n = width(), check = 0, rank = 0;
T det = 1;
assert(b.size() == m);
for(int j = 0; j < n; j++){
int pivot = check;
for(int i = check; i < m; i++){
if(A[i][j] != 0) pivot = i;
//if(abs(A[i][j]) > abs(A[pivot][j])) pivot = i; //T
}
if(check != pivot) det *= T(-1);
swap(A[check], A[pivot]), swap(b[check], b[pivot]);
if(eq(A[check][j], T(0))) {det = T(0); continue;}
rank++;
det *= A[check][j];
for(int k = j+1; k < n; k++) A[check][k] /= A[check][j];
b[check] /= A[check][j];
A[check][j] = T(1);
for(int i = 0; i < m; i++){
if(i == check) continue;
for(int k = j+1; k < n; k++) A[i][k] -= A[i][j]*A[check][k];
b[i] -= A[i][j]*b[check];
A[i][j] = T(0);
}
if(++check == m) break;
}
return make_pair(rank, det);
}
pair<int, T> row_reduction(){
vector<T> b(height(), T(0));
return row_reduction(b);
}
vector<vector<T>> Gausiann_elimination(vector<T> b){ //Ax=b1
int m = height(), n = width();
row_reduction(b);
vector<vector<T>> ret;
vector<int> p(m, n);
vector<bool> is_zero(n, true);
for(int i = 0; i < m; i++){
for(int j = 0; j < n; j++){
if(!eq(A[i][j], T(0))) {p[i] = j; break;}
}
if(p[i] < n) is_zero[p[i]] = false;
else if(!eq(b[i], T(0))) return {};
}
vector<T> x(n, T(0));
for(int i = 0; i < m; i++){
if(p[i] < n) x[p[i]] = b[i];
}
ret.push_back(x);
for(int j = 0; j < n; j++){
if(!is_zero[j]) continue;
x[j] = T(1);
for(int i = 0; i < m; i++){
if(p[i] < n) x[p[i]] = -A[i][j];
}
ret.push_back(x), x[j] = T(0);
}
return ret;
}
};
int main(){
ll N; mint A, B, K; cin >> N >> A >> B >> K;
mint C = (B*B+K)/A;
if(N == 1) {cout << A << '\n'; return 0;}
mint t = (A+C)/B;
using mat = Matrix<mint>;
mat a(2, 2);
a[0][0] = t, a[0][1] = -1;
a[1][0] = 1, a[1][1] = 0;
mat x(2, 1);
x[0][0] = C, x[1][0] = B;
a = a.pow(N-2), a *= x;
cout << a[1][0] << '\n';
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0