結果

問題 No.1558 Derby Live
ユーザー fukafukatanifukafukatani
提出日時 2021-06-25 22:49:23
言語 Rust
(1.77.0 + proconio)
結果
TLE  
(最新)
AC  
(最初)
実行時間 -
コード長 16,241 bytes
コンパイル時間 13,636 ms
コンパイル使用メモリ 401,852 KB
実行使用メモリ 120,116 KB
最終ジャッジ日時 2024-06-25 08:45:13
合計ジャッジ時間 74,297 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 TLE -
testcase_01 AC 1,879 ms
120,116 KB
testcase_02 AC 1 ms
6,944 KB
testcase_03 AC 1,059 ms
14,660 KB
testcase_04 AC 990 ms
64,776 KB
testcase_05 AC 1,283 ms
66,432 KB
testcase_06 AC 1,671 ms
62,028 KB
testcase_07 AC 69 ms
54,568 KB
testcase_08 AC 1,847 ms
114,408 KB
testcase_09 AC 1,858 ms
115,900 KB
testcase_10 AC 1,864 ms
115,884 KB
testcase_11 AC 1,851 ms
115,764 KB
testcase_12 AC 1,864 ms
115,820 KB
testcase_13 AC 1,850 ms
115,772 KB
testcase_14 AC 1,949 ms
115,908 KB
testcase_15 AC 1,877 ms
115,780 KB
testcase_16 AC 1,876 ms
115,964 KB
testcase_17 AC 1,886 ms
118,752 KB
testcase_18 AC 1,893 ms
118,764 KB
testcase_19 AC 1,894 ms
118,788 KB
testcase_20 AC 1,898 ms
118,800 KB
testcase_21 AC 1,901 ms
118,732 KB
testcase_22 AC 1,887 ms
118,800 KB
testcase_23 AC 1,900 ms
118,788 KB
testcase_24 AC 1,893 ms
118,824 KB
testcase_25 AC 1,892 ms
118,808 KB
testcase_26 AC 1,902 ms
118,684 KB
testcase_27 AC 1,889 ms
118,768 KB
testcase_28 AC 1,889 ms
118,616 KB
testcase_29 AC 1,909 ms
118,804 KB
testcase_30 AC 1,888 ms
118,672 KB
testcase_31 AC 1,897 ms
118,676 KB
testcase_32 AC 1,893 ms
118,748 KB
testcase_33 AC 1 ms
6,944 KB
testcase_34 AC 1 ms
6,944 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: type `mat` should have an upper camel case name
  --> src/main.rs:75:6
   |
75 | type mat = [[i64; 18]; 18];
   |      ^^^ help: convert the identifier to upper camel case: `Mat`
   |
   = note: `#[warn(non_camel_case_types)]` on by default

warning: static variable `mat_ones` should have an upper case name
  --> src/main.rs:18:12
   |
18 | static mut mat_ones: mat = [[0i64; 18]; 18];
   |            ^^^^^^^^ help: convert the identifier to upper case: `MAT_ONES`
   |
   = note: `#[warn(non_upper_case_globals)]` on by default

ソースコード

diff #

#![allow(unused_imports)]
use std::cmp::*;
use std::collections::*;
use std::io::Write;
use std::ops::Bound::*;

#[allow(unused_macros)]
macro_rules! debug {
    ($($e:expr),*) => {
        #[cfg(debug_assertions)]
        $({
            let (e, mut err) = (stringify!($e), std::io::stderr());
            writeln!(err, "{} = {:?}", e, $e).unwrap()
        })*
    };
}

static mut mat_ones: mat = [[0i64; 18]; 18];

fn main() {
    let v = read_vec::<usize>();
    let (n, m, q) = (v[0], v[1], v[2]);
    let mut queries = vec![];
    for _ in 0..q {
        queries.push(read_vec::<usize>());
    }

    unsafe {
        for i in 0..n {
            mat_ones[i][i] = 1;
        }
    }
    let mut seg = Segtree::<Matmul>::new(m);

    for ref query in queries {
        match query[0] {
            1 => {
                let d = query[1] - 1;
                let p = query[2..].iter().map(|&x| x - 1).collect::<Vec<_>>();
                let mut mat = mat_zeros();
                for i in 0..n {
                    mat[i][p[i]] = 1;
                }
                seg.set(d, mat);
            }
            2 => {
                let s = query[1] - 1;
                let m = seg.prod(0, s + 1);
                for i in 0..n {
                    for j in 0..n {
                        if m[j][i] == 1 {
                            print!("{} ", j + 1);
                        }
                    }
                }
                println!("");
            }
            _ => {
                let (l, r) = (query[1] - 1, query[2] - 1);
                let m = seg.prod(l, r + 1);
                let mut ans = 0;
                for i in 0..n {
                    for j in 0..n {
                        if m[j][i] == 1 {
                            ans += (i as i64 - j as i64).abs();
                        }
                    }
                }
                println!("{}", ans);
            }
        }
    }
}

type mat = [[i64; 18]; 18];

fn mat_zeros() -> mat {
    [[0i64; 18]; 18]
}

fn matmul(a: &mat, b: &mat) -> mat {
    let mut c = mat_zeros();
    for i in 0..a.len() {
        for k in 0..b.len() {
            for j in 0..b[0].len() {
                c[i][j] += a[i][k] * b[k][j];
            }
        }
    }
    c
}

pub struct Matmul;
impl Monoid for Matmul {
    type S = mat;
    fn identity() -> Self::S {
        unsafe { mat_ones }
    }
    fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
        matmul(a, b)
    }
}

fn read<T: std::str::FromStr>() -> T {
    let mut s = String::new();
    std::io::stdin().read_line(&mut s).ok();
    s.trim().parse().ok().unwrap()
}

fn read_vec<T: std::str::FromStr>() -> Vec<T> {
    read::<String>()
        .split_whitespace()
        .map(|e| e.parse().ok().unwrap())
        .collect()
}

//https://github.com/rust-lang-ja/ac-library-rs

pub mod internal_bit {
    // Skipped:
    //
    // - `bsf` = `__builtin_ctz`: is equivalent to `{integer}::trailing_zeros`

    #[allow(dead_code)]
    pub(crate) fn ceil_pow2(n: u32) -> u32 {
        32 - n.saturating_sub(1).leading_zeros()
    }

    #[cfg(test)]
    mod tests {
        #[test]
        fn ceil_pow2() {
            // https://github.com/atcoder/ac-library/blob/2088c8e2431c3f4d29a2cfabc6529fe0a0586c48/test/unittest/bit_test.cpp
            assert_eq!(0, super::ceil_pow2(0));
            assert_eq!(0, super::ceil_pow2(1));
            assert_eq!(1, super::ceil_pow2(2));
            assert_eq!(2, super::ceil_pow2(3));
            assert_eq!(2, super::ceil_pow2(4));
            assert_eq!(3, super::ceil_pow2(5));
            assert_eq!(3, super::ceil_pow2(6));
            assert_eq!(3, super::ceil_pow2(7));
            assert_eq!(3, super::ceil_pow2(8));
            assert_eq!(4, super::ceil_pow2(9));
            assert_eq!(30, super::ceil_pow2(1 << 30));
            assert_eq!(31, super::ceil_pow2((1 << 30) + 1));

            assert_eq!(32, super::ceil_pow2(u32::max_value()));
        }
    }
}
pub mod internal_type_traits {
    use std::{
        fmt,
        iter::{Product, Sum},
        ops::{
            Add, AddAssign, BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Div,
            DivAssign, Mul, MulAssign, Not, Rem, RemAssign, Shl, ShlAssign, Shr, ShrAssign, Sub,
            SubAssign,
        },
    };

    // Skipped:
    //
    // - `is_signed_int_t<T>`   (probably won't be used directly in `modint.rs`)
    // - `is_unsigned_int_t<T>` (probably won't be used directly in `modint.rs`)
    // - `to_unsigned_t<T>`     (not used in `fenwicktree.rs`)

    /// Corresponds to `std::is_integral` in C++.
    // We will remove unnecessary bounds later.
    //
    // Maybe we should rename this to `PrimitiveInteger` or something, as it probably won't be used in the
    // same way as the original ACL.
    pub trait Integral:
        'static
        + Send
        + Sync
        + Copy
        + Ord
        + Not<Output = Self>
        + Add<Output = Self>
        + Sub<Output = Self>
        + Mul<Output = Self>
        + Div<Output = Self>
        + Rem<Output = Self>
        + AddAssign
        + SubAssign
        + MulAssign
        + DivAssign
        + RemAssign
        + Sum
        + Product
        + BitOr<Output = Self>
        + BitAnd<Output = Self>
        + BitXor<Output = Self>
        + BitOrAssign
        + BitAndAssign
        + BitXorAssign
        + Shl<Output = Self>
        + Shr<Output = Self>
        + ShlAssign
        + ShrAssign
        + fmt::Display
        + fmt::Debug
        + fmt::Binary
        + fmt::Octal
        + Zero
        + One
        + BoundedBelow
        + BoundedAbove
    {
    }

    /// Class that has additive identity element
    pub trait Zero {
        /// The additive identity element
        fn zero() -> Self;
    }

    /// Class that has multiplicative identity element
    pub trait One {
        /// The multiplicative identity element
        fn one() -> Self;
    }

    pub trait BoundedBelow {
        fn min_value() -> Self;
    }

    pub trait BoundedAbove {
        fn max_value() -> Self;
    }

    macro_rules! impl_integral {
    ($($ty:ty),*) => {
        $(
            impl Zero for $ty {
                #[inline]
                fn zero() -> Self {
                    0
                }
            }

            impl One for $ty {
                #[inline]
                fn one() -> Self {
                    1
                }
            }

            impl BoundedBelow for $ty {
                #[inline]
                fn min_value() -> Self {
                    Self::min_value()
                }
            }

            impl BoundedAbove for $ty {
                #[inline]
                fn max_value() -> Self {
                    Self::max_value()
                }
            }

            impl Integral for $ty {}
        )*
    };
}

    impl_integral!(i8, i16, i32, i64, i128, isize, u8, u16, u32, u64, u128, usize);
}
pub mod segtree {
    use crate::internal_bit::ceil_pow2;
    use crate::internal_type_traits::{BoundedAbove, BoundedBelow, One, Zero};
    use std::cmp::{max, min};
    use std::convert::Infallible;
    use std::marker::PhantomData;
    use std::ops::{Add, Mul};

    // TODO Should I split monoid-related traits to another module?
    pub trait Monoid {
        type S: Clone;
        fn identity() -> Self::S;
        fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S;
    }

    pub struct Max<S>(Infallible, PhantomData<fn() -> S>);
    impl<S> Monoid for Max<S>
    where
        S: Copy + Ord + BoundedBelow,
    {
        type S = S;
        fn identity() -> Self::S {
            S::min_value()
        }
        fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
            max(*a, *b)
        }
    }

    pub struct Min<S>(Infallible, PhantomData<fn() -> S>);
    impl<S> Monoid for Min<S>
    where
        S: Copy + Ord + BoundedAbove,
    {
        type S = S;
        fn identity() -> Self::S {
            S::max_value()
        }
        fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
            min(*a, *b)
        }
    }

    pub struct Additive<S>(Infallible, PhantomData<fn() -> S>);
    impl<S> Monoid for Additive<S>
    where
        S: Copy + Add<Output = S> + Zero,
    {
        type S = S;
        fn identity() -> Self::S {
            S::zero()
        }
        fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
            *a + *b
        }
    }

    pub struct Multiplicative<S>(Infallible, PhantomData<fn() -> S>);
    impl<S> Monoid for Multiplicative<S>
    where
        S: Copy + Mul<Output = S> + One,
    {
        type S = S;
        fn identity() -> Self::S {
            S::one()
        }
        fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
            *a * *b
        }
    }

    impl<M: Monoid> Default for Segtree<M> {
        fn default() -> Self {
            Segtree::new(0)
        }
    }
    impl<M: Monoid> Segtree<M> {
        pub fn new(n: usize) -> Segtree<M> {
            vec![M::identity(); n].into()
        }
    }
    impl<M: Monoid> From<Vec<M::S>> for Segtree<M> {
        fn from(v: Vec<M::S>) -> Self {
            let n = v.len();
            let log = ceil_pow2(n as u32) as usize;
            let size = 1 << log;
            let mut d = vec![M::identity(); 2 * size];
            d[size..(size + n)].clone_from_slice(&v);
            let mut ret = Segtree { n, size, log, d };
            for i in (1..size).rev() {
                ret.update(i);
            }
            ret
        }
    }
    impl<M: Monoid> Segtree<M> {
        pub fn set(&mut self, mut p: usize, x: M::S) {
            assert!(p < self.n);
            p += self.size;
            self.d[p] = x;
            for i in 1..=self.log {
                self.update(p >> i);
            }
        }

        pub fn get(&self, p: usize) -> M::S {
            assert!(p < self.n);
            self.d[p + self.size].clone()
        }

        pub fn prod(&self, mut l: usize, mut r: usize) -> M::S {
            assert!(l <= r && r <= self.n);
            let mut sml = M::identity();
            let mut smr = M::identity();
            l += self.size;
            r += self.size;

            while l < r {
                if l & 1 != 0 {
                    sml = M::binary_operation(&sml, &self.d[l]);
                    l += 1;
                }
                if r & 1 != 0 {
                    r -= 1;
                    smr = M::binary_operation(&self.d[r], &smr);
                }
                l >>= 1;
                r >>= 1;
            }

            M::binary_operation(&sml, &smr)
        }

        pub fn all_prod(&self) -> M::S {
            self.d[1].clone()
        }

        pub fn max_right<F>(&self, mut l: usize, f: F) -> usize
        where
            F: Fn(&M::S) -> bool,
        {
            assert!(l <= self.n);
            assert!(f(&M::identity()));
            if l == self.n {
                return self.n;
            }
            l += self.size;
            let mut sm = M::identity();
            while {
                // do
                while l % 2 == 0 {
                    l >>= 1;
                }
                if !f(&M::binary_operation(&sm, &self.d[l])) {
                    while l < self.size {
                        l *= 2;
                        let res = M::binary_operation(&sm, &self.d[l]);
                        if f(&res) {
                            sm = res;
                            l += 1;
                        }
                    }
                    return l - self.size;
                }
                sm = M::binary_operation(&sm, &self.d[l]);
                l += 1;
                // while
                {
                    let l = l as isize;
                    (l & -l) != l
                }
            } {}
            self.n
        }

        pub fn min_left<F>(&self, mut r: usize, f: F) -> usize
        where
            F: Fn(&M::S) -> bool,
        {
            assert!(r <= self.n);
            assert!(f(&M::identity()));
            if r == 0 {
                return 0;
            }
            r += self.size;
            let mut sm = M::identity();
            while {
                // do
                r -= 1;
                while r > 1 && r % 2 == 1 {
                    r >>= 1;
                }
                if !f(&M::binary_operation(&self.d[r], &sm)) {
                    while r < self.size {
                        r = 2 * r + 1;
                        let res = M::binary_operation(&self.d[r], &sm);
                        if f(&res) {
                            sm = res;
                            r -= 1;
                        }
                    }
                    return r + 1 - self.size;
                }
                sm = M::binary_operation(&self.d[r], &sm);
                // while
                {
                    let r = r as isize;
                    (r & -r) != r
                }
            } {}
            0
        }

        fn update(&mut self, k: usize) {
            self.d[k] = M::binary_operation(&self.d[2 * k], &self.d[2 * k + 1]);
        }
    }

    // Maybe we can use this someday
    // ```
    // for i in 0..=self.log {
    //     for j in 0..1 << i {
    //         print!("{}\t", self.d[(1 << i) + j]);
    //     }
    //     println!();
    // }
    // ```

    pub struct Segtree<M>
    where
        M: Monoid,
    {
        // variable name is _n in original library
        n: usize,
        size: usize,
        log: usize,
        d: Vec<M::S>,
    }

    #[cfg(test)]
    mod tests {
        use crate::segtree::Max;
        use crate::Segtree;

        #[test]
        fn test_max_segtree() {
            let base = vec![3, 1, 4, 1, 5, 9, 2, 6, 5, 3];
            let n = base.len();
            let segtree: Segtree<Max<_>> = base.clone().into();
            check_segtree(&base, &segtree);

            let mut segtree = Segtree::<Max<_>>::new(n);
            let mut internal = vec![i32::min_value(); n];
            for i in 0..n {
                segtree.set(i, base[i]);
                internal[i] = base[i];
                check_segtree(&internal, &segtree);
            }

            segtree.set(6, 5);
            internal[6] = 5;
            check_segtree(&internal, &segtree);

            segtree.set(6, 0);
            internal[6] = 0;
            check_segtree(&internal, &segtree);
        }

        //noinspection DuplicatedCode
        fn check_segtree(base: &[i32], segtree: &Segtree<Max<i32>>) {
            let n = base.len();
            #[allow(clippy::needless_range_loop)]
            for i in 0..n {
                assert_eq!(segtree.get(i), base[i]);
            }
            for i in 0..=n {
                for j in i..=n {
                    assert_eq!(
                        segtree.prod(i, j),
                        base[i..j].iter().max().copied().unwrap_or(i32::min_value())
                    );
                }
            }
            assert_eq!(
                segtree.all_prod(),
                base.iter().max().copied().unwrap_or(i32::min_value())
            );
            for k in 0..=10 {
                let f = |&x: &i32| x < k;
                for i in 0..=n {
                    assert_eq!(
                        Some(segtree.max_right(i, f)),
                        (i..=n)
                            .filter(|&j| f(&base[i..j]
                                .iter()
                                .max()
                                .copied()
                                .unwrap_or(i32::min_value())))
                            .max()
                    );
                }
                for j in 0..=n {
                    assert_eq!(
                        Some(segtree.min_left(j, f)),
                        (0..=j)
                            .filter(|&i| f(&base[i..j]
                                .iter()
                                .max()
                                .copied()
                                .unwrap_or(i32::min_value())))
                            .min()
                    );
                }
            }
        }
    }
}

use segtree::*;
0