結果
問題 | No.1558 Derby Live |
ユーザー | bayashiko |
提出日時 | 2021-06-25 23:03:24 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 10,400 bytes |
コンパイル時間 | 6,500 ms |
コンパイル使用メモリ | 312,996 KB |
実行使用メモリ | 157,128 KB |
最終ジャッジ日時 | 2024-06-25 08:47:54 |
合計ジャッジ時間 | 13,205 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | TLE | - |
testcase_01 | -- | - |
testcase_02 | -- | - |
testcase_03 | -- | - |
testcase_04 | -- | - |
testcase_05 | -- | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
ソースコード
#include<bits/stdc++.h> #pragma GCC optimize("Ofast") //#pragma GCC target("avx2") #pragma GCC optimize("unroll-loops") using namespace std; //#include<boost/multiprecision/cpp_int.hpp> //#include<boost/multiprecision/cpp_dec_float.hpp> //namespace mp=boost::multiprecision; //#define mulint mp::cpp_int //#define mulfloat mp::cpp_dec_float_100 struct __INIT{__INIT(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(15);}} __init; #define INF (1<<30) #define LINF (lint)(1LL<<56) #define endl "\n" #define rep(i,n) for(lint (i)=0;(i)<(n);(i)++) #define reprev(i,n) for(lint (i)=(n-1);(i)>=0;(i)--) #define flc(x) __builtin_popcountll(x) #define pint pair<int,int> #define pdouble pair<double,double> #define plint pair<lint,lint> #define fi first #define se second #define all(x) x.begin(),x.end() #define vec vector<lint> #define nep(x) next_permutation(all(x)) typedef long long lint; int dx[8]={1,1,0,-1,-1,-1,0,1}; int dy[8]={0,1,1,1,0,-1,-1,-1}; const int MAX_N=3e5+5; template<class T>bool chmax(T &a,const T &b){if(a<b){a=b;return 1;}return 0;} template<class T>bool chmin(T &a,const T &b){if(b<a){a=b;return 1;}return 0;} //vector<int> bucket[MAX_N/1000]; constexpr int MOD=1000000007; //constexpr int MOD=998244353; #include<atcoder/all> using namespace atcoder; typedef __int128_t llint; template<class T> struct Matrix{ vector<vector<T>> A; Matrix(){}; Matrix(size_t n,size_t m):A(n,vector<T>(m,0)){}; Matrix(size_t n):A(n,vector<T>(n,0)){}; size_t height() const{ return (A.size()); } size_t width() const{ return (A[0].size()); } inline const vector<T> &operator[](int k) const{ return (A.at(k)); } inline vector<T> &operator[](int k){ return (A.at(k)); } static Matrix I(size_t n) { Matrix mat(n); rep(i,n) mat[i][i]=1; return (mat); } static Matrix O(size_t n) { Matrix mat(n); return (mat); } static Matrix make(vector<vector<T>> tsumugi){ Matrix mat(tsumugi.size(),tsumugi[0].size()); rep(i,tsumugi.size()) rep(j,tsumugi[0].size()){ mat[i][j]=tsumugi[i][j]; } return (mat); } Matrix &operator+=(const Matrix &B) { size_t n=height(),m=width(); assert(n==B.height() && m==B.width()); rep(i,n) rep(j,m) (*this)[i][j]+=B[i][j]; return (*this); } Matrix &operator-=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); rep(i,n) rep(j,m) (*this)[i][j] -= B[i][j]; return (*this); } Matrix &operator*=(const Matrix &B) { size_t n = height(), m = B.width(), p = width(); assert(p == B.height()); vector< vector< T > > C(n, vector< T >(m, 0)); rep(i,n) rep(j,m) rep(k,p) C[i][j]=(C[i][j]+(*this)[i][k]*B[k][j]); A.swap(C); return (*this); } Matrix &operator^=(long long k) { Matrix B=Matrix::I(height()); while(k>0) { if(k&1) B*=*this; *this*=*this; k>>=1LL; } A.swap(B.A); return (*this); } Matrix operator+(const Matrix &B) const{return (Matrix(*this) += B);} Matrix operator-(const Matrix &B) const{return (Matrix(*this) -= B);} Matrix operator*(const Matrix &B) const{return (Matrix(*this) *= B);} Matrix operator^(const long long k) const{return (Matrix(*this) ^= k);} friend ostream &operator<<(ostream &os, Matrix &p) { size_t n = p.height(), m = p.width(); for(int i = 0; i < n; i++) { os << "["; for(int j = 0; j < m; j++) { os << p[i][j] << (j + 1 == m ? "]\n" : ","); } } return (os); } T determinant() { Matrix B(*this); assert(width() == height()); T ret = 1; for(int i = 0; i < width(); i++) { int idx = -1; for(int j = i; j < width(); j++) { if(B[j][i] != 0) idx = j; } if(idx == -1) return (0); if(i != idx) { ret *= -1; swap(B[i], B[idx]); } ret *= B[i][i]; T vv = B[i][i]; for(int j = 0; j < width(); j++) { B[i][j] /= vv; } for(int j = i + 1; j < width(); j++) { T a = B[j][i]; for(int k = 0; k < width(); k++) { B[j][k] -= B[i][k] * a; } } } return (ret); } }; vector<vector<lint>> mtx{ {1,0,1},//F(N-1),F(N-2),...,F(N-K)の係数 {1,0,0},//1は単位元(ex.積なら1,ANDなら2^N-1) {0,1,0},//0は零元(ex.積やANDなら0,ORなら2^N-1?) }; // K次正方行列 vector<vector<lint>> F{{0,0,1}}; //F(1)~F(K)の値 Matrix<lint> MTX; Matrix<lint> func; void powerinit(){ MTX=MTX.make(mtx); func=func.make(F); } template<class T> Matrix<T> Maker(vector<vector<T>> base){ Matrix<T> res=res.make(base); return res; } template<class T> Matrix<T> PowMatSum(Matrix<T> A,lint n){ //A+A^2+...+A^Nを返す int msize=A.height(); Matrix<T> B(msize*2); rep(i,msize) rep(j,msize) B[i][j]=A[i][j]; rep(i,msize) B[msize+i][i]=B[msize+i][msize+i]=1; B^=n+1; rep(i,msize) B[msize+i][i]-=1; Matrix<T> res(msize); rep(i,msize) rep(j,msize) res[i][j]=B[msize+i][j]; return res; } template<class T> T calc(lint n,Matrix<T> A,Matrix<T> f){ //F(N)の計算 if(n==0) return 0; A^=n-1; T res=0; //零元 rep(i,A.height()) res+=A[A.height()-1][i]*f[0][A.height()-1-i]; //演算 適宜演算子を変える return res; } template<class T> T calc2(Matrix<T> A,Matrix<T> f){ //漸化式じゃない方 T res=0; //零元 rep(i,A.height()) res+=A[0][i]*f[0][i]; //演算 適宜演算子を変える return res; } template<class T> T calcsum(lint n,Matrix<T> A,Matrix<T> f){ //Σ[i=1..N]F(i)の計算 if(n==0) return 0; int msize=A.height(); Matrix<T> B(msize*2); rep(i,msize) rep(j,msize) B[i][j]=A[i][j]; rep(i,msize) B[msize+i][i]=B[msize+i][msize+i]=1; B^=n; rep(i,msize) B[msize+i][i]-=1; T res=0; //零元 rep(i,msize) res+=B[msize*2-1][i]*f[0][msize-1-i]; //演算 適宜演算子を変える return res; } template<class T> Matrix<T> rotateR(){//90度右回転 Matrix<T> res; res=res.O(3); res[0][1]=1,res[1][0]=-1,res[2][2]=1; return res; } template<class T> Matrix<T> rotateL(){//90度左回転 Matrix<T> res; res=res.O(3); res[0][1]=-1,res[1][0]=1,res[2][2]=1; return res; } template<class T> Matrix<T> flipX(T p){//x=pについて対称移動 Matrix<T> res; res=res.O(3); res[0][0]=-1,res[1][1]=1,res[2][2]=1; res[0][2]=2*p; return res; } template<class T> Matrix<T> flipY(T p){//y=pについて対称移動 Matrix<T> res; res=res.O(3); res[0][0]=1,res[1][1]=-1,res[2][2]=1; res[1][2]=2*p; return res; } template<class T> Matrix<T> move(T x,T y){//(x,y)だけ平行移動 Matrix<T> res; res=res.I(3); res[0][2]=x,res[1][2]=y; return res; } template<class T> Matrix<T> point(T x,T y){//点(x,y)を表す3×1行列を返す Matrix<T> res(3,1); res[0][0]=x,res[1][0]=y,res[2][0]=1; return res; } double EPS=1e-9; template<class T> int GaussJordan(Matrix<T> &A, bool is_extended = false){ int m = A.height(), n = A.width(); int rank = 0; for (int col = 0; col < n; ++col) { // 拡大係数行列の場合は最後の列は掃き出ししない if (is_extended && col == n-1) break; // ピボットを探す int pivot = -1; T ma = EPS; for (int row = rank; row < m; ++row) { if (abs(A[row][col]) > ma) { ma = abs(A[row][col]); pivot = row; } } // ピボットがなかったら次の列へ if (pivot == -1) continue; // まずは行を swap swap(A[pivot], A[rank]); // ピボットの値を 1 にする auto fac = A[rank][col]; for (int col2 = 0; col2 < n; ++col2) A[rank][col2] /= fac; // ピボットのある列の値がすべて 0 になるように掃き出す for (int row = 0; row < m; ++row) { if (row != rank && abs(A[row][col]) > EPS) { auto fac = A[row][col]; for (int col2 = 0; col2 < n; ++col2) { A[row][col2] -= A[rank][col2] * fac; } } } ++rank; } return rank; } template<class T> vector<T> linear_equation(Matrix<T> mat,vector<T> num){ int m=mat.height(),n=mat.width(); Matrix<T> M(m,n+1); rep(i,m) rep(j,n) M[i][j]=mat[i][j]; rep(i,m) M[i][n]=num[i]; int rank=GaussJordan(M,true); vector<T> res; for(int row=rank;row<m;row++) if(abs(M[row][n])>EPS) return res; res.assign(n,0); rep(i,rank) res[i]=M[i][n]; return res; } int N,M,Q; Matrix<lint> op(Matrix<lint> a,Matrix<lint> b){ return a*b; } Matrix<lint> e(){ return MTX.I(N); } int fix(int p){ return M-1-p; } int main(void){ cin >> N >> M >> Q; segtree<Matrix<lint>,op,e> seg(M); while(Q--){ int t; cin >> t; if(t==1){ Matrix<lint> use=MTX.O(N); int D; cin >> D; D--; D=fix(D); int P[N]; rep(j,N) cin >> P[j],P[j]--; rep(j,N) use[P[j]][j]=1; seg.set(D,use); } else if(t==2){ int S; cin >> S; S--; Matrix<lint> res=seg.prod(fix(S),M); vector<lint> init(N); rep(i,N) init[i]=i; vector<lint> ans(N); rep(i,N) rep(j,N) ans[i]+=res[i][j]*init[j]; rep(i,N) cout << ans[i]+1 << " "; cout << endl; } else{ int L,R; cin >> L >> R; L--,R--; Matrix<lint> res=seg.prod(fix(R),fix(L)+1); vector<lint> init(N); rep(i,N) init[i]=i; vector<lint> ans(N); rep(i,N) rep(j,N) ans[i]+=res[i][j]*init[j]; int ans2=0; rep(i,N) ans2+=abs(i-ans[i]); cout << ans2 << endl; } } }