結果
問題 | No.1574 Swap and Repaint |
ユーザー |
![]() |
提出日時 | 2021-06-27 15:30:26 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 5,463 bytes |
コンパイル時間 | 2,780 ms |
コンパイル使用メモリ | 208,932 KB |
最終ジャッジ日時 | 2025-01-22 14:37:56 |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 10 WA * 23 |
ソースコード
#include <bits/stdc++.h>using namespace std;using Int = long long;const char newl = '\n';template<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}template<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}template<typename T> void drop(const T &x){cout<<x<<endl;exit(0);}template<typename T=int>vector<T> read(size_t n){vector<T> ts(n);for(size_t i=0;i<n;i++) cin>>ts[i];return ts;}template<typename T, T MOD = 1000000007>struct Mint{inline static constexpr T mod = MOD;T v;Mint():v(0){}Mint(signed v):v(v){}Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}Mint pow(long long k){Mint res(1),tmp(v);while(k){if(k&1) res*=tmp;tmp*=tmp;k>>=1;}return res;}static Mint add_identity(){return Mint(0);}static Mint mul_identity(){return Mint(1);}Mint inv(){return pow(MOD-2);}Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}Mint& operator/=(Mint a){return (*this)*=a.inv();}Mint operator+(Mint a) const{return Mint(v)+=a;}Mint operator-(Mint a) const{return Mint(v)-=a;}Mint operator*(Mint a) const{return Mint(v)*=a;}Mint operator/(Mint a) const{return Mint(v)/=a;}Mint operator+() const{return *this;}Mint operator-() const{return v?Mint(MOD-v):Mint(v);}bool operator==(const Mint a)const{return v==a.v;}bool operator!=(const Mint a)const{return v!=a.v;}static Mint comb(long long n,int k){Mint num(1),dom(1);for(int i=0;i<k;i++){num*=Mint(n-i);dom*=Mint(i+1);}return num/dom;}};template<typename T, T MOD>ostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;}// construct a charasteristic equation from sequence// return a monic polynomial in O(n^2)template<typename T>vector<T> berlekamp_massey(vector<T> &as){using Poly = vector<T>;int n=as.size();Poly bs({-T(1)}),cs({-T(1)});T y(1);for(int ed=1;ed<=n;ed++){int l=cs.size(),m=bs.size();T x(0);for(int i=0;i<l;i++) x+=cs[i]*as[ed-l+i];bs.emplace_back(0);m++;if(x==T(0)) continue;T freq=x/y;if(m<=l){for(int i=0;i<m;i++)cs[l-1-i]-=freq*bs[m-1-i];continue;}auto ts=cs;cs.insert(cs.begin(),m-l,T(0));for(int i=0;i<m;i++) cs[m-1-i]-=freq*bs[m-1-i];bs=ts;y=x;}for(auto &c:cs) c/=cs.back();return cs;}template<typename M_>class Enumeration{using M = M_;protected:inline static vector<M> fact,finv,invs;public:static void init(int n){n=min<decltype(M::mod)>(n,M::mod-1);int m=fact.size();if(n<m) return;fact.resize(n+1,1);finv.resize(n+1,1);invs.resize(n+1,1);if(m==0) m=1;for(int i=m;i<=n;i++) fact[i]=fact[i-1]*M(i);finv[n]=M(1)/fact[n];for(int i=n;i>=m;i--) finv[i-1]=finv[i]*M(i);for(int i=m;i<=n;i++) invs[i]=finv[i]*fact[i-1];}static M Fact(int n){init(n);return fact[n];}static M Finv(int n){init(n);return finv[n];}static M Invs(int n){init(n);return invs[n];}static M C(int n,int k){if(n<k or k<0) return M(0);init(n);return fact[n]*finv[n-k]*finv[k];}static M P(int n,int k){if(n<k or k<0) return M(0);init(n);return fact[n]*finv[n-k];}// put n identical balls into k distinct boxesstatic M H(int n,int k){if(n<0 or k<0) return M(0);if(!n and !k) return M(1);init(n+k);return C(n+k-1,n);}};// [0, n]template<typename T>vector<T> powers(int n,T x){vector<T> po(n+1,T(1));for(int i=0;i<n;i++) po[i+1]=po[i]*x;return po;}//INSERT ABOVE HEREsigned main(){cin.tie(0);ios::sync_with_stdio(0);int n;cin>>n;auto as=read(n);using M = Mint<int, 998244353>;using E = Enumeration<M>;E::init(2e5);auto po=powers(n*2+10,M(2));vector<M> cs(n,0);{for(int y=0;y<n-1;y++){//cs[y]+=E::Fact(n-1)*po[2*(n-1)-1];//for(int x=0;x<y;x++){// cs[y]+=E::Fact(n-1)*E::Finv(y-x+1)*po[2*(n-1)-(y-x+1)];// cs[y]+=E::Fact(n-1)*(E::Finv(y-x)-E::Finv(y-x+1))*po[2*(n-1)-(y-x)];//}if(y==0) cs[y]+=E::Fact(n-1)*po[2*(n-1)-1];else{cs[y]+=cs[y-1];cs[y]+=E::Fact(n-1)*E::Finv(y+1)*po[2*(n-1)-(y+1)];cs[y]+=E::Fact(n-1)*(E::Finv(y)-E::Finv(y+1))*po[2*(n-1)-y];}}{int y=n-1;cs[y]+=E::Fact(n-1)*po[2*(n-1)];for(int x=0;x<y;x++){cs[y]+=E::Fact(n-1)*E::Finv(y-x)*po[2*(n-1)-(y-x)];}}}vector<M> dp(n);for(int i=0;i<n;i++) dp[i]=M(as[i]);const int B = min(n+1,500);vector<M>seq;for(int t=0;t<B;t++){M res{0};for(int i=0;i<n;i++) res+=cs[i]*dp[i];seq.emplace_back(res);vector<M> nx(n,0);for(int i=0;i<n;i++){if(i==0){nx[i+0]+=dp[i]*M(n-2);nx[i+1]+=dp[i];}else if(i==n-1){nx[i-1]+=dp[i];nx[i-0]+=dp[i]*M(n-2);}else{nx[i-1]+=dp[i];nx[i-0]+=dp[i]*M(n-3);nx[i+1]+=dp[i];}}swap(dp,nx);}auto bm=berlekamp_massey(seq);bm.pop_back();for(int t=B;t<=n;t++){M res{0};for(int j=0;j<(int)bm.size();j++)res+=seq[t-1-j]*bm[j];seq.emplace_back(res);}for(int i=0;i<=n;i++) cout<<seq[i]<<newl;return 0;}