結果

問題 No.243 出席番号(2)
ユーザー moti
提出日時 2015-12-20 02:57:23
言語 C++11(廃止可能性あり)
(gcc 13.3.0)
結果
AC  
実行時間 188 ms / 2,000 ms
コード長 3,724 bytes
コンパイル時間 909 ms
コンパイル使用メモリ 104,744 KB
実行使用メモリ 6,948 KB
最終ジャッジ日時 2024-09-17 11:18:17
合計ジャッジ時間 3,925 ms
ジャッジサーバーID
(参考情報)
judge6 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 30
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <complex>
#include <queue>
#include <deque>
#include <set>
#include <map>
#include <unordered_set>
#include <unordered_map>
#include <iomanip>
#include <assert.h>
#include <array>
#include <cstdio>
#include <cstring>
#include <random>
#include <functional>
#include <numeric>
#include <bitset>
using namespace std;
#define REP(i,a,b) for(int i=a;i<(int)b;i++)
#define rep(i,n) REP(i,0,n)
#define all(c) (c).begin(), (c).end()
#define zero(a) memset(a, 0, sizeof a)
#define minus(a) memset(a, -1, sizeof a)
#define minimize(a, x) a = std::min(a, x)
#define maximize(a, x) a = std::max(a, x)
typedef long long ll;
int const inf = 1<<29;
template<class value_type, int MOD>
class ModInt {
private:
value_type val_;
static value_type mod_pow(value_type x, value_type n, value_type mo) { value_type ret = 1; while(n > 0) { if(n & 1) { ret = ret * x % mo; } x = x *
      x % mo; n >>= 1; } return ret; }
public:
ModInt() { val_ = 0; }
ModInt(value_type x) { val_ = (x % MOD + MOD) % MOD; }
ModInt const operator + (ModInt const& rhs) const {
return std::move(ModInt(val_+rhs.get()));
}
ModInt const operator - (ModInt const& rhs) const {
return std::move(ModInt(val_-rhs.get()));
}
ModInt const operator * (ModInt const& rhs) const {
return std::move(ModInt(val_*rhs.get()));
}
ModInt const operator / (ModInt const& rhs) const {
return std::move(ModInt(val_*mod_pow(rhs.get(), MOD-2, MOD))); // fermat theorem
}
friend ModInt const operator + (value_type lhs, ModInt const& rhs) {
return std::move(ModInt(lhs+rhs.get()));
}
friend ModInt const operator - (value_type lhs, ModInt const& rhs) {
return std::move(ModInt(lhs-rhs.get()));
}
friend ModInt const operator * (value_type lhs, ModInt const& rhs) {
return std::move(ModInt(lhs*rhs.get()));
}
friend ModInt const operator / (value_type lhs, ModInt const& rhs) {
return std::move(ModInt(lhs*mod_pow(rhs.get(), MOD-2, MOD))); // fermat theorem
}
ModInt operator += (ModInt const& rhs) {
return *this = ModInt(val_+rhs.get()).get();
}
ModInt operator -= (ModInt const& rhs) {
return *this = ModInt(val_-rhs.get()).get();
}
ModInt operator *= (ModInt const& rhs) {
return *this = ModInt(val_*rhs.get()).get();
}
ModInt operator /= (ModInt const& rhs) {
return *this = ModInt(val_*mod_pow(rhs.get(), MOD-2, MOD)).get();
}
bool operator == (ModInt const& rhs) const {
return val_ == rhs.get();
}
value_type const get() const { return val_; }
value_type & get() { return val_; }
friend ostream& operator << (ostream& ost, ModInt const& x) {
return ost << x.get();
}
friend istream& operator >> (istream& ist, ModInt& x) {
string s; ist >> s;
int size = s.size();
x.get() = 0;
rep(i, size) {
x.get() *= 10;
x.get() += s[i]-'0';
x.get() %= MOD;
}
return ist;
}
};
typedef ModInt<long long, 1000000007> mint;
vector<mint> dp(5050);
vector<mint> P(5050);
int ngnums[5050];
int main() {
int N; cin >> N;
rep(i, N) { int a; cin >> a; ngnums[a]++; }
dp[0] = 1;
rep(i, N) for(int j=N-1; j>=0; j--)
dp[j + 1] += dp[j] * ngnums[i]; // i1 ∨ i2 ∨ ...
P[0] = 1; REP(i, 1, N+1) P[i] = P[i-1] * i;
mint ans = 0;
// = - 1 + 2 - 3 + ... + (-1)^k k + ... (-1
      )^N N
rep(i, N+1) {
ans += (i % 2 == 0 ? +1 : -1) * dp[i] * P[N - i];
}
cout << ans << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0