結果
問題 |
No.654 Air E869120
|
ユーザー |
|
提出日時 | 2021-07-03 16:05:43 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 4,194 bytes |
コンパイル時間 | 2,706 ms |
コンパイル使用メモリ | 217,928 KB |
最終ジャッジ日時 | 2025-01-22 17:16:30 |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 5 |
other | AC * 32 TLE * 3 |
コンパイルメッセージ
main.cpp: In function ‘int main()’: main.cpp:112:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 112 | scanf("%lld %lld %lld %lld %lld", &u, &v, &p, &q, &w); | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ソースコード
#include <bits/stdc++.h> using namespace std; typedef long long ll; typedef unsigned long long ull; #define REP(i, n) for(int i=0; i<n; i++) #define REPi(i, a, b) for(int i=int(a); i<int(b); i++) #define MEMS(a,b) memset(a,b,sizeof(a)) #define mp make_pair #define MOD(a, m) ((a % m + m) % m) template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; } template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; } const ll MOD = 1e9+7; ll V; const ll INF = 1LL << 60; const int MAX_V = 2100; using P = pair<ll, ll>; //// {行き先, 容量, 逆辺} //// {to, cap, rev} //// G[v][to] <-> G[to][rev] //using Edge = tuple<int, ll, int>; //vector<Edge> G[MAX_V]; //bool used[MAX_V]; struct edge { int to, rev; long long cap; }; vector<edge> g[2009]; bool vis[2009]; const long long inf = 1LL << 55; ////// G に辺と逆辺を追加 //void add_edge(int from, int to, ll cap){ // G[from].push_back(Edge(to, cap, G[to].size())); // G[to].push_back(Edge(from, 0, G[from].size()-1)); //} // ////// 増加パスをdfsで探索 ////ll find_path(int v, int t, ll f, auto& used){ //ll find_path(int v, int t, ll f){ // if(v == t) return f; // used[v] = true; // for(auto& [to, cap, rev] : G[v]){ // if(!used[to] && cap > 0){ // //ll d = find_path(to, t, min(f, cap), used); // ll d = find_path(to, t, min(f, cap)); // if(d > 0){ // cap -= d; // get<1>(G[to][rev]) += d; // return d; // } // } // } // return 0; //} // ////// sからtへの最大流を求める //ll max_flow(int s, int t){ // ll flow = 0; // //array<bool, MAX_V> used; // while(1){ // //fill(used.begin(), used.end(), false); // fill(used, used+V, false); // //ll f = find_path(s, t, INF, used); // ll f = find_path(s, t, INF); // if(f == 0) break; // flow += f; // } // return flow; //} void add_edge(int v1, int v2, long long cost) { g[v1].push_back(edge{ v2, (int)g[v2].size(), cost }); g[v2].push_back(edge{ v1, (int)g[v1].size() - 1, 0LL }); } long long find_augment(int pos, int tar, long long curflow) { if (pos == tar) return curflow; vis[pos] = true; for (edge &e : g[pos]) { if (!vis[e.to] && e.cap > 0) { long long newflow = find_augment(e.to, tar, min(e.cap, curflow)); if (newflow > 0) { e.cap -= newflow; g[e.to][e.rev].cap += newflow; return newflow; } } } return 0; } long long max_flow(int src, int dst) { long long ret = 0; while (true) { fill(vis, vis + V, false); long long res = find_augment(src, dst, inf); if (res == 0) break; ret += res; } return ret; } int main(){ ll N, M, D; cin >> N >> M >> D; using T = tuple<ll, ll, ll, ll, ll>; vector<T> X; REP(i,M){ ll u, v, p, q, w; //cin >> u >> v >> p >> q >> w; scanf("%lld %lld %lld %lld %lld", &u, &v, &p, &q, &w); u--, v--; X.push_back(T(u, v, p, q, w)); } vector<vector<int>> vertex(N); vertex[0].push_back(0); vertex[N-1].push_back(1000000000LL); for(auto& [u, v, p, q, w] : X){ vertex[u].push_back(p); vertex[v].push_back(q+D); } map<P, int> pos2idx; ll cnt = 0; REP(v, N){ sort(vertex[v].begin(), vertex[v].end()); vertex[v].erase(unique(vertex[v].begin(), vertex[v].end()), vertex[v].end()); int size = vertex[v].size(); REP(i, size){ pos2idx[P(v, vertex[v][i])] = cnt++; } } for(auto& [u, v, p, q, w] : X){ auto v0 = pos2idx[P(u, p)]; auto v1 = pos2idx[P(v, q+D)]; add_edge(v0, v1, w); } REP(v, N){ int size = vertex[v].size(); REP(i, size-1){ auto v0 = pos2idx[P(v, vertex[v][i])]; auto v1 = pos2idx[P(v, vertex[v][i+1])]; add_edge(v0, v1, INF); } } V = cnt; //cout << V << endl; ll ans = max_flow(0, cnt-1); cout << ans << endl; return 0; }