結果
| 問題 |
No.1559 Next Rational
|
| コンテスト | |
| ユーザー |
tails
|
| 提出日時 | 2021-07-04 16:29:25 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 3 ms / 2,000 ms |
| コード長 | 14,384 bytes |
| コンパイル時間 | 2,485 ms |
| コンパイル使用メモリ | 192,660 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-07-01 05:58:03 |
| 合計ジャッジ時間 | 3,319 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 15 |
ソースコード
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("inline")
#include<bits/stdc++.h>
using namespace std;
#define MD (1000000007U)
#define MINT_W (32U)
#define MINT_R (294967268U)
#define MINT_RR (582344008U)
#define MINT_MDNINV (2226617417U)
template<class T> struct cLtraits_identity{
using type = T;
}
;
template<class T> using cLtraits_try_make_signed =
typename conditional<
is_integral<T>::value,
make_signed<T>,
cLtraits_identity<T>
>::type;
template <class S, class T> struct cLtraits_common_type{
using tS = typename cLtraits_try_make_signed<S>::type;
using tT = typename cLtraits_try_make_signed<T>::type;
using type = typename common_type<tS,tT>::type;
}
;
void*wmem;
char memarr[96000000];
template<class S, class T> inline auto max_L(S a, T b)
-> typename cLtraits_common_type<S,T>::type{
return (typename cLtraits_common_type<S,T>::type) a >= (typename cLtraits_common_type<S,T>::type) b ? a : b;
}
template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){
static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
(*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] );
(*arr)=(T*)(*mem);
(*mem)=((*arr)+x);
}
template<class T> inline void walloc1d(T **arr, int x1, int x2, void **mem = &wmem){
walloc1d(arr, x2-x1, mem);
(*arr) -= x1;
}
struct Mint{
unsigned val;
Mint(){
val=0;
}
Mint(int a){
val = mulR(a);
}
Mint(unsigned a){
val = mulR(a);
}
Mint(long long a){
val = mulR(a);
}
Mint(unsigned long long a){
val = mulR(a);
}
inline unsigned mulR(unsigned a){
return (unsigned long long)a*MINT_R%MD;
}
inline unsigned mulR(int a){
if(a < 0){
a = a%((int)MD)+(int)MD;
}
return mulR((unsigned)a);
}
inline unsigned mulR(unsigned long long a){
return mulR((unsigned)(a%MD));
}
inline unsigned mulR(long long a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return mulR((unsigned)a);
}
inline unsigned reduce(unsigned T){
unsigned m = T * MINT_MDNINV;
unsigned t = (unsigned)((T + (unsigned long long)m*MD) >> MINT_W);
if(t >= MD){
t -= MD;
}
return t;
}
inline unsigned reduce(unsigned long long T){
unsigned m = (unsigned)T * MINT_MDNINV;
unsigned t = (unsigned)((T + (unsigned long long)m*MD) >> MINT_W);
if(t >= MD){
t -= MD;
}
return t;
}
inline unsigned get(){
return reduce(val);
}
inline Mint &operator++(){
(*this) += 1;
return *this;
}
inline Mint &operator--(){
(*this) -= 1;
return *this;
}
inline Mint operator++(int a){
Mint res(*this);
(*this) += 1;
return res;
}
inline Mint operator--(int a){
Mint res(*this);
(*this) -= 1;
return res;
}
inline Mint &operator+=(Mint a){
val += a.val;
if(val >= MD){
val -= MD;
}
return *this;
}
inline Mint &operator-=(Mint a){
if(val < a.val){
val = val + MD - a.val;
}
else{
val -= a.val;
}
return *this;
}
inline Mint &operator*=(Mint a){
val = reduce((unsigned long long)val*a.val);
return *this;
}
inline Mint &operator/=(Mint a){
return *this *= a.inverse();
}
inline Mint operator+(Mint a){
return Mint(*this)+=a;
}
inline Mint operator-(Mint a){
return Mint(*this)-=a;
}
inline Mint operator*(Mint a){
return Mint(*this)*=a;
}
inline Mint operator/(Mint a){
return Mint(*this)/=a;
}
inline Mint operator+(int a){
return Mint(*this)+=Mint(a);
}
inline Mint operator-(int a){
return Mint(*this)-=Mint(a);
}
inline Mint operator*(int a){
return Mint(*this)*=Mint(a);
}
inline Mint operator/(int a){
return Mint(*this)/=Mint(a);
}
inline Mint operator+(long long a){
return Mint(*this)+=Mint(a);
}
inline Mint operator-(long long a){
return Mint(*this)-=Mint(a);
}
inline Mint operator*(long long a){
return Mint(*this)*=Mint(a);
}
inline Mint operator/(long long a){
return Mint(*this)/=Mint(a);
}
inline Mint operator-(void){
Mint res;
if(val){
res.val=MD-val;
}
else{
res.val=0;
}
return res;
}
inline operator bool(void){
return val!=0;
}
inline operator int(void){
return get();
}
inline operator long long(void){
return get();
}
inline Mint inverse(){
int a = val;
int b = MD;
int u = 1;
int v = 0;
int t;
Mint res;
while(b){
t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
if(u < 0){
u += MD;
}
res.val = (unsigned long long)u*MINT_RR % MD;
return res;
}
inline Mint pw(unsigned long long b){
Mint a(*this);
Mint res;
res.val = MINT_R;
while(b){
if(b&1){
res *= a;
}
b >>= 1;
a *= a;
}
return res;
}
inline bool operator==(int a){
return mulR(a)==val;
}
inline bool operator!=(int a){
return mulR(a)!=val;
}
}
;
inline Mint operator+(int a, Mint b){
return Mint(a)+=b;
}
inline Mint operator-(int a, Mint b){
return Mint(a)-=b;
}
inline Mint operator*(int a, Mint b){
return Mint(a)*=b;
}
inline Mint operator/(int a, Mint b){
return Mint(a)/=b;
}
inline Mint operator+(long long a, Mint b){
return Mint(a)+=b;
}
inline Mint operator-(long long a, Mint b){
return Mint(a)-=b;
}
inline Mint operator*(long long a, Mint b){
return Mint(a)*=b;
}
inline Mint operator/(long long a, Mint b){
return Mint(a)/=b;
}
inline int my_getchar_unlocked(){
static char buf[1048576];
static int s = 1048576;
static int e = 1048576;
if(s == e && e == 1048576){
e = fread_unlocked(buf, 1, 1048576, stdin);
s = 0;
}
if(s == e){
return EOF;
}
return buf[s++];
}
inline void rd(int &x){
int k;
int m=0;
x=0;
for(;;){
k = my_getchar_unlocked();
if(k=='-'){
m=1;
break;
}
if('0'<=k&&k<='9'){
x=k-'0';
break;
}
}
for(;;){
k = my_getchar_unlocked();
if(k<'0'||k>'9'){
break;
}
x=x*10+k-'0';
}
if(m){
x=-x;
}
}
inline void rd(long long &x){
int k;
int m=0;
x=0;
for(;;){
k = my_getchar_unlocked();
if(k=='-'){
m=1;
break;
}
if('0'<=k&&k<='9'){
x=k-'0';
break;
}
}
for(;;){
k = my_getchar_unlocked();
if(k<'0'||k>'9'){
break;
}
x=x*10+k-'0';
}
if(m){
x=-x;
}
}
inline void rd(Mint &x){
int i;
rd(i);
x=i;
}
struct MY_WRITER{
char buf[1048576];
int s;
int e;
MY_WRITER(){
s = 0;
e = 1048576;
}
~MY_WRITER(){
if(s){
fwrite_unlocked(buf, 1, s, stdout);
}
}
}
;
MY_WRITER MY_WRITER_VAR;
void my_putchar_unlocked(int a){
if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){
fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout);
MY_WRITER_VAR.s = 0;
}
MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a;
}
inline void wt_L(char a){
my_putchar_unlocked(a);
}
inline void wt_L(int x){
int s=0;
int m=0;
char f[10];
if(x<0){
m=1;
x=-x;
}
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
if(m){
my_putchar_unlocked('-');
}
while(s--){
my_putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(unsigned x){
int s=0;
char f[10];
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
while(s--){
my_putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(long long x){
int s=0;
int m=0;
char f[20];
if(x<0){
m=1;
x=-x;
}
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
if(m){
my_putchar_unlocked('-');
}
while(s--){
my_putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(unsigned long long x){
int s=0;
char f[21];
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
while(s--){
my_putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(Mint x){
int i;
i = (int)x;
wt_L(i);
}
int WRITER_DOUBLE_DIGIT = 15;
inline int writerDigit_double(){
return WRITER_DOUBLE_DIGIT;
}
inline void writerDigit_double(int d){
WRITER_DOUBLE_DIGIT = d;
}
inline void wt_L(double x){
const int d = WRITER_DOUBLE_DIGIT;
int k;
int r;
double v;
if(x!=x || (x==x+1 && x==2*x)){
my_putchar_unlocked('E');
my_putchar_unlocked('r');
my_putchar_unlocked('r');
return;
}
if(x < 0){
my_putchar_unlocked('-');
x = -x;
}
x += 0.5 * pow(0.1, d);
r = 0;
v = 1;
while(x >= 10*v){
v *= 10;
r++;
}
while(r >= 0){
r--;
k = floor(x / v);
if(k >= 10){
k = 9;
}
if(k <= -1){
k = 0;
}
x -= k * v;
v *= 0.1;
my_putchar_unlocked(k + '0');
}
if(d > 0){
my_putchar_unlocked('.');
v = 1;
for(r=(0);r<(d);r++){
v *= 0.1;
k = floor(x / v);
if(k >= 10){
k = 9;
}
if(k <= -1){
k = 0;
}
x -= k * v;
my_putchar_unlocked(k + '0');
}
}
}
inline void wt_L(const char c[]){
int i=0;
for(i=0;c[i]!='\0';i++){
my_putchar_unlocked(c[i]);
}
}
inline void wt_L(string &x){
int i=0;
for(i=0;x[i]!='\0';i++){
my_putchar_unlocked(x[i]);
}
}
template<class T, class P, class M> T PowMod(T a, P b, M m){
T r;
r = 1;
while(b > 0){
if(b % 2){
r = r * a % m;
}
b /= 2;
if(b > 0){
a = a * a % m;
}
}
return r;
}
template<class S, class T> inline S chmax(S &a, T b){
if(a<b){
a=b;
}
return a;
}
template<class T> struct Polynomial{
int d;
int mem;
T*c;
Polynomial(){
mem = 1;
c = new T[mem];
d = 0;
c[0] = 0;
}
Polynomial(T a){
mem = 1;
c = new T[mem];
d = 0;
c[0] = a;
}
Polynomial(const Polynomial<T> &a){
int i;
d = a.d;
mem = d + 1;
c = new T[mem];
for(i=(0);i<(d+1);i++){
c[i] = a.c[i];
}
}
~Polynomial(){
delete [] c;
}
void expand(int z){
int i;
T*cc;
if(z <= mem){
return;
}
mem =max_L(z, 2 * mem);
cc = new T[mem];
for(i=(0);i<(d+1);i++){
cc[i] = c[i];
}
delete [] c;
c = cc;
}
inline void change(const int dg, const T cf){
expand(dg+1);
while(d < dg){
c[++d] = 0;
}
c[dg] = cf;
while(d && c[d]==0){
d--;
}
}
inline int deg(void){
return d;
}
inline T coef(const int k){
if(k > d){
return 0;
}
return c[k];
}
Polynomial<T>& operator=(const T a){
d = 0;
expand(d + 1);
c[0] = a;
return *this;
}
Polynomial<T>& operator=(const Polynomial<T> &a){
int i;
d = a.d;
expand(d + 1);
for(i=(0);i<(d+1);i++){
c[i] = a.c[i];
}
return *this;
}
Polynomial<T>& operator+=(const Polynomial<T> &a){
int i;
int k;
k =max_L(d, a.d);
expand(k+1);
while(d < k){
c[++d] = 0;
}
for(i=(0);i<(a.d+1);i++){
c[i] += a.c[i];
}
while(d && c[d]==0){
d--;
}
return *this;
}
Polynomial<T> operator+(const Polynomial<T> &a){
return Polynomial<T>(*this) += a;
}
Polynomial<T>& operator-=(const Polynomial<T> &a){
int i;
int k;
k =max_L(d, a.d);
expand(k+1);
while(d < k){
c[++d] = 0;
}
for(i=(0);i<(a.d+1);i++){
c[i] -= a.c[i];
}
while(d && c[d]==0){
d--;
}
return *this;
}
Polynomial<T> operator-(const Polynomial<T> &a){
return Polynomial<T>(*this) -= a;
}
Polynomial<T>& operator*=(const Polynomial<T> &a){
int i;
int j;
int k;
T*cc;
void*mem = wmem;
k = d + a.d;
expand(k+1);
walloc1d(&cc, k+1, &mem);
for(i=(0);i<(k+1);i++){
cc[i] = 0;
}
for(i=(0);i<(d+1);i++){
for(j=(0);j<(a.d+1);j++){
cc[i+j] += c[i] * a.c[j];
}
}
for(i=(0);i<(k+1);i++){
c[i] = cc[i];
}
d = k;
while(d && c[d]==0){
d--;
}
return *this;
}
Polynomial<T> operator*(const Polynomial<T> &a){
return Polynomial<T>(*this) *= a;
}
Polynomial<T>& operator/=(const Polynomial<T> &a){
int i;
int j;
int k;
T*cc;
T e;
void*mem = wmem;
walloc1d(&cc, d-a.d, &mem);
for(i=d; i>=a.d; i--){
cc[i-a.d] = e = c[i] / a.c[a.d];
for(j=(0);j<(a.d+1);j++){
c[i-j] -= e * a.c[a.d-j];
}
}
d -= a.d;
for(i=(0);i<(d+1);i++){
c[i] = cc[i];
}
return *this;
}
Polynomial<T> operator/(const Polynomial<T> &a){
return Polynomial<T>(*this) /= a;
}
Polynomial<T>& operator%=(const Polynomial<T> &a){
int i;
int j;
int k;
T*cc;
T e;
void*mem = wmem;
walloc1d(&cc, d-a.d, &mem);
for(i=d; i>=a.d; i--){
cc[i-a.d] = e = c[i] / a.c[a.d];
for(j=(0);j<(a.d+1);j++){
c[i-j] -= e * a.c[a.d-j];
}
}
while(d && c[d]==0){
d--;
}
return *this;
}
Polynomial<T> operator%(const Polynomial<T> &a){
return Polynomial<T>(*this) %= a;
}
Polynomial<T>& operator*=(const T &a){
int i;
for(i=(0);i<(d+1);i++){
c[i] *= a;
}
while(d && c[d]==0){
d--;
}
return *this;
}
Polynomial<T> operator*(const T &a){
return Polynomial<T>(*this) *= a;
}
Polynomial<T>& operator/=(const T &a){
int i;
for(i=(0);i<(d+1);i++){
c[i] /= a;
}
while(d && c[d]==0){
d--;
}
return *this;
}
Polynomial<T> operator/(const T &a){
return Polynomial<T>(*this) /= a;
}
inline T operator()(const T x){
int i;
T res;
res = 0;
for(i=d;i>=0;i--){
res = res * x + c[i];
}
return res;
}
}
;
template<class T> Polynomial<T> operator*(const T a, const Polynomial<T> &b){
return Polynomial<T>(b)*=a;
}
int main(){
wmem = memarr;
long long n;
rd(n);
Mint a;
rd(a);
Mint b;
rd(b);
Mint k;
rd(k);
Polynomial<Mint> p;
Polynomial<Mint> m;
Polynomial<Mint> r;
p.change(1,1);
m.change(2,1);
m.change(1,-(a*a+b*b+k)/(a*b));
m.change(0,1);
r=PowMod(p,n-1,m);
wt_L(r.coef(0)*a+r.coef(1)*b);
wt_L('\n');
return 0;
}
// cLay version 20210703-1
// --- original code ---
// //yukicoder@clay
// {
// ll@n;Mint@a,@b,@k;
// Polynomial<Mint> p,m,r;
// p.change(1,1);
// m.change(2,1);
// m.change(1,-(a*a+b*b+k)/(a*b));
// m.change(0,1);
// r=PowMod(p,n-1,m);
// wt(r.coef(0)*a+r.coef(1)*b);
// }
//
tails