結果
| 問題 |
No.723 2つの数の和
|
| ユーザー |
shirokami
|
| 提出日時 | 2021-07-07 16:49:47 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 5,786 bytes |
| コンパイル時間 | 7,310 ms |
| コンパイル使用メモリ | 420,024 KB |
| 最終ジャッジ日時 | 2025-01-22 18:02:23 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 15 WA * 2 RE * 5 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#include <boost/multiprecision/cpp_int.hpp>
namespace mp = boost::multiprecision;
#include <atcoder/all>
using namespace atcoder;
#pragma GCC optimize("O0")
typedef long long int ll;
typedef long double ld;
const ll mod = 1e9+7;
const ll INF = 1e18;
#define rep(i,n) for (ll i = 0; i < (n); ++i)
#define Rep(i,a,n) for (ll i = (a); i < (n); ++i)
#define All(a) (a).begin(),(a).end()
#define Pi acos(-1)
using Graph = vector<vector<ll>>;
using V = vector<ll>;
using P = pair<ll,ll>;
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }
struct IoSetup {
IoSetup() {
cin.tie(nullptr);
ios_base::sync_with_stdio(false);
cout << setprecision(15) << fixed;
}
} iosetup;
template<class T>
struct FormalPowerSeries : vector<T> {
using vector<T>::vector;
using vector<T>::operator=;
using F = FormalPowerSeries;
F operator-() const {
F res(*this);
for (auto &e : res) e = -e;
return res;
}
F &operator*=(const T &g) {
for (auto &e : *this) e *= g;
return *this;
}
F &operator/=(const T &g) {
assert(g != T(0));
*this *= g.inv();
return *this;
}
F &operator+=(const F &g) {
ll n = (*this).size(), m = g.size();
rep(i, min(n, m)) (*this)[i] += g[i];
return *this;
}
F &operator-=(const F &g) {
ll n = (*this).size(), m = g.size();
rep(i, min(n, m)) (*this)[i] -= g[i];
return *this;
}
F &operator<<=(const ll d) {
ll n = (*this).size();
(*this).insert((*this).begin(), d, 0);
(*this).resize(n);
return *this;
}
F &operator>>=(const ll d) {
ll n = (*this).size();
(*this).erase((*this).begin(), (*this).begin() + min(n, d));
(*this).resize(n);
return *this;
}
F inv(ll d = -1) const {
ll n = (*this).size();
assert(n != 0 && (*this)[0] != 0);
if (d == -1) d = n;
assert(d > 0);
F res{(*this)[0].inv()};
while (res.size() < d) {
ll m = size(res);
F f(begin(*this), begin(*this) + min(n, 2*m));
F r(res);
f.resize(2*m), internal::butterfly(f);
r.resize(2*m), internal::butterfly(r);
rep(i, 2*m) f[i] *= r[i];
internal::butterfly_inv(f);
f.erase(f.begin(), f.begin() + m);
f.resize(2*m), internal::butterfly(f);
rep(i, 2*m) f[i] *= r[i];
internal::butterfly_inv(f);
T iz = T(2*m).inv(); iz *= -iz;
rep(i, m) f[i] *= iz;
res.insert(res.end(), f.begin(), f.begin() + m);
}
return {res.begin(), res.begin() + d};
}
// fast: FMT-friendly modulus only
F &operator*=(const F &g) {
ll n = (*this).size();
*this = convolution(*this, g);
(*this).resize(n);
return *this;
}
F &operator/=(const F &g) {
ll n = (*this).size();
*this = convolution(*this, g.inv(n));
(*this).resize(n);
return *this;
}
// // naive
// F &operator*=(const F &g) {
// ll n = (*this).size(), m = g.size();
// for (ll i = n-1; i >= 0; --i) {
// (*this)[i] *= g[0];
// Rep(j, 1, min(i+1, m)) (*this)[i] += (*this)[i-j] * g[j];
// }
// return *this;
// }
// F &operator/=(const F &g) {
// assert(g[0] != T(0));
// T ig0 = g[0].inv();
// ll n = (*this).size(), m = g.size();
// rep(i, n) {
// Rep(j, 1, min(i+1, m)) (*this)[i] -= (*this)[i-j] * g[j];
// (*this)[i] *= ig0;
// }
// return *this;
// }
// sparse
F &operator*=(vector<pair<ll, T>> g) {
ll n = (*this).size();
auto [d, c] = g.front();
if (d == 0) g.erase(g.begin());
else c = 0;
for (ll i = n-1; i >= 0; --i) {
(*this)[i] *= c;
for (auto &[j, b] : g) {
if (j > i) break;
(*this)[i] += (*this)[i-j] * b;
}
}
return *this;
}
F &operator/=(vector<pair<ll, T>> g) {
ll n = (*this).size();
auto [d, c] = g.front();
assert(d == 0 && c != T(0));
T ic = c.inv();
g.erase(g.begin());
rep(i, n) {
for (auto &[j, b] : g) {
if (j > i) break;
(*this)[i] -= (*this)[i-j] * b;
}
(*this)[i] *= ic;
}
return *this;
}
// multiply and divide (1 + cz^d)
void multiply(const ll d, const T c) {
ll n = (*this).size();
if (c == T(1)) for (ll i = n-d-1; i >= 0; --i) (*this)[i+d] += (*this)[i];
else if (c == T(-1)) for (ll i = n-d-1; i >= 0; --i) (*this)[i+d] -= (*this)[i];
else for (ll i = n-d-1; i >= 0; --i) (*this)[i+d] += (*this)[i] * c;
}
void divide(const ll d, const T c) {
ll n = (*this).size();
if (c == T(1)) rep(i, n-d) (*this)[i+d] -= (*this)[i];
else if (c == T(-1)) rep(i, n-d) (*this)[i+d] += (*this)[i];
else rep(i, n-d) (*this)[i+d] -= (*this)[i] * c;
}
T eval(const T &a) const {
T x(1), res(0);
for (auto e : *this) res += e * x, x *= a;
return res;
}
F operator*(const T &g) const { return F(*this) *= g; }
F operator/(const T &g) const { return F(*this) /= g; }
F operator+(const F &g) const { return F(*this) += g; }
F operator-(const F &g) const { return F(*this) -= g; }
F operator<<(const ll d) const { return F(*this) <<= d; }
F operator>>(const ll d) const { return F(*this) >>= d; }
F operator*(const F &g) const { return F(*this) *= g; }
F operator/(const F &g) const { return F(*this) /= g; }
F operator*(vector<pair<ll, T>> g) const { return F(*this) *= g; }
F operator/(vector<pair<ll, T>> g) const { return F(*this) /= g; }
};
using mint = modint998244353;
using fps = FormalPowerSeries<mint>;
using sfps = vector<pair<ll, mint>>;
int main() {
ll n, x;
cin >> n >> x;
fps f(101000);
rep(i,n) {
ll a;
cin >> a;
f[a]++;
}
f *= f;
cout << f[x].val() << '\n';
}
shirokami