結果

問題 No.1339 循環小数
ユーザー tailstails
提出日時 2021-07-08 21:55:47
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 46 ms / 2,000 ms
コード長 20,697 bytes
コンパイル時間 3,529 ms
コンパイル使用メモリ 214,528 KB
実行使用メモリ 13,640 KB
最終ジャッジ日時 2024-07-01 12:34:47
合計ジャッジ時間 4,884 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 9 ms
9,800 KB
testcase_01 AC 9 ms
9,800 KB
testcase_02 AC 9 ms
9,672 KB
testcase_03 AC 9 ms
9,800 KB
testcase_04 AC 9 ms
9,672 KB
testcase_05 AC 9 ms
9,800 KB
testcase_06 AC 10 ms
11,840 KB
testcase_07 AC 9 ms
11,716 KB
testcase_08 AC 10 ms
13,640 KB
testcase_09 AC 9 ms
10,052 KB
testcase_10 AC 9 ms
9,676 KB
testcase_11 AC 10 ms
11,852 KB
testcase_12 AC 10 ms
9,800 KB
testcase_13 AC 10 ms
11,716 KB
testcase_14 AC 10 ms
11,716 KB
testcase_15 AC 9 ms
9,800 KB
testcase_16 AC 10 ms
11,716 KB
testcase_17 AC 9 ms
9,668 KB
testcase_18 AC 9 ms
9,888 KB
testcase_19 AC 10 ms
9,540 KB
testcase_20 AC 10 ms
11,716 KB
testcase_21 AC 18 ms
9,680 KB
testcase_22 AC 18 ms
9,796 KB
testcase_23 AC 19 ms
10,168 KB
testcase_24 AC 18 ms
10,032 KB
testcase_25 AC 20 ms
11,848 KB
testcase_26 AC 20 ms
11,844 KB
testcase_27 AC 19 ms
10,064 KB
testcase_28 AC 19 ms
11,848 KB
testcase_29 AC 16 ms
11,712 KB
testcase_30 AC 18 ms
11,840 KB
testcase_31 AC 46 ms
11,588 KB
testcase_32 AC 46 ms
9,676 KB
testcase_33 AC 18 ms
9,800 KB
testcase_34 AC 11 ms
9,800 KB
testcase_35 AC 43 ms
11,840 KB
testcase_36 AC 19 ms
9,800 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("inline")
#include<bits/stdc++.h>
using namespace std;
#define MD (1000000007U)
template<class T> struct cLtraits_identity{
  using type = T;
}
;
template<class T> using cLtraits_try_make_signed =
  typename conditional<
    is_integral<T>::value,
    make_signed<T>,
    cLtraits_identity<T>
    >::type;
template <class S, class T> struct cLtraits_common_type{
  using tS = typename cLtraits_try_make_signed<S>::type;
  using tT = typename cLtraits_try_make_signed<T>::type;
  using type = typename common_type<tS,tT>::type;
}
;
void*wmem;
char memarr[96000000];
template<class S, class T> inline auto min_L(S a, T b)
-> typename cLtraits_common_type<S,T>::type{
  return (typename cLtraits_common_type<S,T>::type) a <= (typename cLtraits_common_type<S,T>::type) b ? a : b;
}
template<class S, class T> inline auto max_L(S a, T b)
-> typename cLtraits_common_type<S,T>::type{
  return (typename cLtraits_common_type<S,T>::type) a >= (typename cLtraits_common_type<S,T>::type) b ? a : b;
}
template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){
  static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
  (*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] );
  (*arr)=(T*)(*mem);
  (*mem)=((*arr)+x);
}
template<class T> inline void walloc1d(T **arr, int x1, int x2, void **mem = &wmem){
  walloc1d(arr, x2-x1, mem);
  (*arr) -= x1;
}
#define ISPRIME_PRE_CALC_SIZE 1000000
char isPrime_prime_table[ISPRIME_PRE_CALC_SIZE];
template<class T> inline int isPrime(T n);
void isPrime32_init(void);
int isPrime32_sub(int b, unsigned n);
int isPrime32(unsigned n);
int isPrime64_sub(long long b, unsigned long long n);
int isPrime64(unsigned long long n);
#define FACTOR_PRE_CALC_SIZE 1000000
int factor_hasprime_table[FACTOR_PRE_CALC_SIZE];
template<class T, class R1, class R2> int Factor(T N, R1 fac[], R2 fs[], void *mem = wmem);
template<class T, class R1> int Factor(T N, R1 fac[], void *mem = wmem);
template<class T> int Factor(T N, void *mem = wmem);
unsigned Factor32_rho(unsigned n);
template<class R1, class R2> int Factor32(unsigned N, R1 fac[], R2 fs[], void *mem = wmem);
unsigned long long Factor64_rho(unsigned long long n);
template<class R1, class R2> int Factor64(unsigned long long N, R1 fac[], R2 fs[], void *mem = wmem);
void Factor32_init(void);
template<class T, class R> int Divisor(T N, R res[], void *mem = wmem);
template<class T1> void sortA_L(int N, T1 a[], void *mem = wmem){
  sort(a, a+N);
}
struct Rand{
  unsigned x;
  unsigned y;
  unsigned z;
  unsigned w;
  Rand(void){
    x=123456789;
    y=362436069;
    z=521288629;
    w=(unsigned)time(NULL);
  }
  Rand(unsigned seed){
    x=123456789;
    y=362436069;
    z=521288629;
    w=seed;
  }
  inline unsigned get(void){
    unsigned t;
    t = (x^(x<<11));
    x=y;
    y=z;
    z=w;
    w = (w^(w>>19))^(t^(t>>8));
    return w;
  }
  inline double getUni(void){
    return get()/4294967296.0;
  }
  inline int get(int a){
    return (int)(a*getUni());
  }
  inline int get(int a, int b){
    return a+(int)((b-a+1)*getUni());
  }
  inline long long get(long long a){
    return(long long)(a*getUni());
  }
  inline long long get(long long a, long long b){
    return a+(long long)((b-a+1)*getUni());
  }
  inline double get(double a, double b){
    return a+(b-a)*getUni();
  }
  inline int getExp(int a){
    return(int)(exp(getUni()*log(a+1.0))-1.0);
  }
  inline int getExp(int a, int b){
    return a+(int)(exp(getUni()*log((b-a+1)+1.0))-1.0);
  }
}
;
struct modint{
  static unsigned md;
  unsigned val;
  modint(){
    val=0;
  }
  modint(int a){
    val = ord(a);
  }
  modint(unsigned a){
    val = ord(a);
  }
  modint(long long a){
    val = ord(a);
  }
  modint(unsigned long long a){
    val = ord(a);
  }
  void setmod(unsigned m){
    md = m;
  }
  unsigned ord(unsigned a){
    return a%md;
  }
  unsigned ord(int a){
    a %= (int)md;
    if(a < 0){
      a += md;
    }
    return a;
  }
  unsigned ord(unsigned long long a){
    return a%md;
  }
  unsigned ord(long long a){
    a %= (int)md;
    if(a < 0){
      a += md;
    }
    return a;
  }
  unsigned get(){
    return val;
  }
  inline modint &operator++(){
    val++;
    if(val >= md){
      val -= md;
    }
    return *this;
  }
  inline modint &operator--(){
    if(val == 0){
      val = md - 1;
    }
    else{
      --val;
    }
    return *this;
  }
  inline modint operator++(int a){
    modint res(*this);
    val++;
    if(val >= md){
      val -= md;
    }
    return res;
  }
  inline modint operator--(int a){
    modint res(*this);
    if(val == 0){
      val = md - 1;
    }
    else{
      --val;
    }
    return res;
  }
  modint &operator+=(modint a){
    val += a.val;
    if(val >= md){
      val -= md;
    }
    return *this;
  }
  modint &operator-=(modint a){
    if(val < a.val){
      val = val + md - a.val;
    }
    else{
      val -= a.val;
    }
    return *this;
  }
  modint &operator*=(modint a){
    val = ((unsigned long long)val*a.val)%md;
    return *this;
  }
  modint &operator/=(modint a){
    return *this *= a.inverse();
  }
  modint operator+(modint a){
    return modint(*this)+=a;
  }
  modint operator-(modint a){
    return modint(*this)-=a;
  }
  modint operator*(modint a){
    return modint(*this)*=a;
  }
  modint operator/(modint a){
    return modint(*this)/=a;
  }
  modint operator+(int a){
    return modint(*this)+=modint(a);
  }
  modint operator-(int a){
    return modint(*this)-=modint(a);
  }
  modint operator*(int a){
    return modint(*this)*=modint(a);
  }
  modint operator/(int a){
    return modint(*this)/=modint(a);
  }
  modint operator+(long long a){
    return modint(*this)+=modint(a);
  }
  modint operator-(long long a){
    return modint(*this)-=modint(a);
  }
  modint operator*(long long a){
    return modint(*this)*=modint(a);
  }
  modint operator/(long long a){
    return modint(*this)/=modint(a);
  }
  modint operator-(void){
    modint res;
    if(val){
      res.val=md-val;
    }
    else{
      res.val=0;
    }
    return res;
  }
  operator bool(void){
    return val!=0;
  }
  operator int(void){
    return get();
  }
  operator long long(void){
    return get();
  }
  modint inverse(){
    int a = val;
    int b = md;
    int u = 1;
    int v = 0;
    int t;
    modint res;
    while(b){
      t = a / b;
      a -= t * b;
      swap(a, b);
      u -= t * v;
      swap(u, v);
    }
    if(u < 0){
      u += md;
    }
    res.val = u;
    return res;
  }
  modint pw(unsigned long long b){
    modint a(*this);
    modint res;
    res.val = 1;
    while(b){
      if(b&1){
        res *= a;
      }
      b >>= 1;
      a *= a;
    }
    return res;
  }
  bool operator==(int a){
    return ord(a)==val;
  }
  bool operator!=(int a){
    return ord(a)!=val;
  }
}
;
unsigned modint::md;
modint operator+(int a, modint b){
  return modint(a)+=b;
}
modint operator-(int a, modint b){
  return modint(a)-=b;
}
modint operator*(int a, modint b){
  return modint(a)*=b;
}
modint operator/(int a, modint b){
  return modint(a)/=b;
}
modint operator+(long long a, modint b){
  return modint(a)+=b;
}
modint operator-(long long a, modint b){
  return modint(a)-=b;
}
modint operator*(long long a, modint b){
  return modint(a)*=b;
}
modint operator/(long long a, modint b){
  return modint(a)/=b;
}
inline int my_getchar_unlocked(){
  static char buf[1048576];
  static int s = 1048576;
  static int e = 1048576;
  if(s == e && e == 1048576){
    e = fread_unlocked(buf, 1, 1048576, stdin);
    s = 0;
  }
  if(s == e){
    return EOF;
  }
  return buf[s++];
}
inline void rd(long long &x){
  int k;
  int m=0;
  x=0;
  for(;;){
    k = my_getchar_unlocked();
    if(k=='-'){
      m=1;
      break;
    }
    if('0'<=k&&k<='9'){
      x=k-'0';
      break;
    }
  }
  for(;;){
    k = my_getchar_unlocked();
    if(k<'0'||k>'9'){
      break;
    }
    x=x*10+k-'0';
  }
  if(m){
    x=-x;
  }
}
struct MY_WRITER{
  char buf[1048576];
  int s;
  int e;
  MY_WRITER(){
    s = 0;
    e = 1048576;
  }
  ~MY_WRITER(){
    if(s){
      fwrite_unlocked(buf, 1, s, stdout);
    }
  }
}
;
MY_WRITER MY_WRITER_VAR;
void my_putchar_unlocked(int a){
  if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){
    fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout);
    MY_WRITER_VAR.s = 0;
  }
  MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a;
}
inline void wt_L(char a){
  my_putchar_unlocked(a);
}
inline void wt_L(int x){
  int s=0;
  int m=0;
  char f[10];
  if(x<0){
    m=1;
    x=-x;
  }
  while(x){
    f[s++]=x%10;
    x/=10;
  }
  if(!s){
    f[s++]=0;
  }
  if(m){
    my_putchar_unlocked('-');
  }
  while(s--){
    my_putchar_unlocked(f[s]+'0');
  }
}
inline void wt_L(long long x){
  int s=0;
  int m=0;
  char f[20];
  if(x<0){
    m=1;
    x=-x;
  }
  while(x){
    f[s++]=x%10;
    x/=10;
  }
  if(!s){
    f[s++]=0;
  }
  if(m){
    my_putchar_unlocked('-');
  }
  while(s--){
    my_putchar_unlocked(f[s]+'0');
  }
}
template<class T> inline T pow2_L(T a){
  return a*a;
}
template<class T, class S> inline T pow_L(T a, S b){
  T res = 1;
  res = 1;
  for(;;){
    if(b&1){
      res *= a;
    }
    b >>= 1;
    if(b==0){
      break;
    }
    a *= a;
  }
  return res;
}
inline double pow_L(double a, double b){
  return pow(a,b);
}
template<class T, class U> inline T GCD_L(T a, U b){
  T r;
  while(b){
    r=a;
    a=b;
    b=r%a;
  }
  return a;
}
inline long long Isqrt_f_L(const long long n){
  long long r = sqrt(n);
  r =max_L(r-2, 0);
  while((pow2_L((r+1)))<= n ){
    r++;
  }
  return r;
}
long long euler(long long a){
  long long p=a;
  long long i=2;
  while(a>1){
    if(a%i==0){
      p-=p/i;
    }
    while(a%i==0){
      a/=i;
    }
    ++i;
    if(i*i>a){
      i=a;
    }
  }
  return p;
}
long long d[100000];
int main(){
  int cTE1_r3A;
  wmem = memarr;
  {
    isPrime32_init();
  }
  {
    Factor32_init();
  }
  {
    modint x;
    x.setmod(MD);
  }
  long long t;
  rd(t);
  for(cTE1_r3A=(0);cTE1_r3A<(t);cTE1_r3A++){
    long long n;
    rd(n);
    while(n%2==0){
      n/=2;
    }
    while(n%5==0){
      n/=5;
    }
    if(n==1){
      wt_L(1);
      wt_L('\n');
      continue;
    }
    Divisor(euler(n),d);
    modint x;
    x.setmod(n);
    long long a=0;
    while(1){
      x=10;
      (x = pow_L(x,d[a]));
      if(x==1){
        break;
      }
      ++a;
    }
    wt_L(d[a]);
    wt_L('\n');
  }
  return 0;
}
template<class T> inline int isPrime(T n){
  T i;
  if(n<=1){
    return 0;
  }
  if(n <= (1ULL<<32) - 1){
    return isPrime32(n);
  }
  if(n <= (1ULL<<63) - 1 + (1ULL<<63)){
    return isPrime64(n);
  }
  if(n<=3){
    return 1;
  }
  if(n%2==0){
    return 0;
  }
  for(i=3;i*i<=n;i+=2){
    if(n%i==0){
      return 0;
    }
  }
  return 1;
}
int isPrime32_sub(int b, unsigned n){
  unsigned i;
  unsigned t = 0;
  unsigned u = n-1;
  unsigned long long nw;
  unsigned long long nx;
  while(!(u&1)){
    t++;
    u >>= 1;
  }
  nw = 1;
  nx = b % n;
  while(u){
    if(u&1){
      nw = (nw * nx) % n;
    }
    nx = (nx * nx) % n;
    u >>= 1;
  }
  for(i=(0);i<(t);i++){
    nx = (nw * nw) % n;
    if(nx == 1 && nw != 1 && nw != n-1){
      return 0;
    }
    nw = nx;
  }
  if(nw == 1){
    return 1;
  }
  return 0;
}
int isPrime32(unsigned n){
  if(n < 100000){
    return isPrime_prime_table[n];
  }
  if(n % 2 == 0){
    return 0;
  }
  if(!isPrime32_sub(2,n)){
    return 0;
  }
  if(n<=1000000){
    if(!isPrime32_sub(3,n)){
      return 0;
    }
  }
  else{
    if(!isPrime32_sub(7,n)){
      return 0;
    }
    if(!isPrime32_sub(61,n)){
      return 0;
    }
  }
  return 1;
}
int isPrime64_sub(long long b, unsigned long long n){
  unsigned long long i;
  unsigned long long t = 0;
  unsigned long long u = n-1;
  __uint128_t nw;
  __uint128_t nx;
  while(!(u&1)){
    t++;
    u >>= 1;
  }
  nw = 1;
  nx = b % n;
  while(u){
    if(u&1){
      nw = (nw * nx) % n;
    }
    nx = (nx * nx) % n;
    u >>= 1;
  }
  for(i=(0);i<(t);i++){
    nx = (nw * nw) % n;
    if(nx == 1 && nw != 1 && nw != n-1){
      return 0;
    }
    nw = nx;
  }
  if(nw == 1){
    return 1;
  }
  return 0;
}
int isPrime64(unsigned long long n){
  if(n < 100000){
    return isPrime_prime_table[n];
  }
  if(n < (1ULL<<32)){
    return isPrime32(n);
  }
  if(n % 2 == 0){
    return 0;
  }
  if(!isPrime64_sub(2,n)){
    return 0;
  }
  if(n <= 21652684502221ULL){
    if(!isPrime64_sub(1215,n)){
      return 0;
    }
    if(!isPrime64_sub(34862,n)){
      return 0;
    }
    if(!isPrime64_sub(574237825,n)){
      return 0;
    }
  }
  else{
    if(!isPrime64_sub(325,n)){
      return 0;
    }
    if(!isPrime64_sub(9375,n)){
      return 0;
    }
    if(!isPrime64_sub(28178,n)){
      return 0;
    }
    if(!isPrime64_sub(450775,n)){
      return 0;
    }
    if(!isPrime64_sub(9780504,n)){
      return 0;
    }
    if(!isPrime64_sub(1795265022,n)){
      return 0;
    }
  }
  return 1;
}
void isPrime32_init(void){
  int i;
  int j;
  int k;
  k =Isqrt_f_L(ISPRIME_PRE_CALC_SIZE);
  for(i=(2);i<(ISPRIME_PRE_CALC_SIZE);i++){
    isPrime_prime_table[i] = 1;
  }
  for(i=(2);i<(k+1);i++){
    if(isPrime_prime_table[i]){
      for(j=(i*i);j<(ISPRIME_PRE_CALC_SIZE);j+=(i)){
        isPrime_prime_table[j] = 0;
      }
    }
  }
}
template<class T, class R1, class R2> int Factor(T N, R1 fac[], R2 fs[], void *mem/* = wmem*/){
  T i;
  int sz = 0;
  if(N <= 1){
    return sz;
  }
  if(N <= (1ULL<<32) - 1){
    return Factor32(N, fac, fs, mem);
  }
  if(N <= (1ULL<<63) - 1 + (1ULL<<63)){
    return Factor64(N, fac, fs, mem);
  }
  if(N%2==0){
    fac[sz] = 2;
    fs[sz] = 1;
    N /= 2;
    while(N%2==0){
      N /= 2;
      fs[sz]++;
    }
    sz++;
  }
  for(i=3;i*i<=N;i+=2){
    if(N%i==0){
      fac[sz] = i;
      fs[sz] = 1;
      N /= i;
      while(N%i==0){
        N /= i;
        fs[sz]++;
      }
      sz++;
    }
  }
  if(N > 1){
    fac[sz] = N;
    fs[sz] = 1;
    sz++;
  }
  return sz;
}
template<class T, class R1> int Factor(T N, R1 fac[], void *mem/* = wmem*/){
  int*fs;
  walloc1d(&fs,128,&mem);
  return Factor(N, fac, fs, mem);
}
template<class T> int Factor(T N, void *mem/* = wmem*/){
  T*fac;
  int*fs;
  walloc1d(&fac,128,&mem);
  walloc1d(&fs,128,&mem);
  return Factor(N, fac, fs, mem);
}
unsigned Factor32_rho(unsigned n){
  static Rand rnd;
  const int step = 16;
  int i;
  int s;
  int nx;
  int mx;
  unsigned long long x;
  unsigned long long y;
  unsigned long long memo;
  unsigned long long c;
  unsigned long long m;
  unsigned g;
  long long lm;
  lm =min_L(1ULL<<30, n - 1);
  for(;;){
    x = y = rnd.get(1LL, lm);
    c = rnd.get(1LL, lm);
    g = 1;
    for(nx=1;g==1;nx<<=1){
      x = y;
      for(i=(0);i<(nx);i++){
        y = (y * y + c) % n;
      }
      for(s=0;s<nx&&g==1;s+=step){
        m = 1;
        memo = y;
        mx =min_L(step, nx-s);
        for(i=(0);i<(mx);i++){
          y = (y * y + c) % n;
          if(x >= y){
            m = (m * (x - y)) % n;
          }
          else{
            m = (m * (y - x)) % n;
          }
        }
        g =GCD_L(n, m);
        if(g != 1){
          if(g != n){
            return g;
          }
          y = memo;
          for(;;){
            y = (y * y + c) % n;
            if(x >= y){
              m = x - y;
            }
            else{
              m = y - x;
            }
            g =GCD_L(n, m);
            if(g == n){
              break;
            }
            if(g != 1){
              return g;
            }
          }
        }
      }
    }
  }
  return 0;
}
template<class R1, class R2> int Factor32(unsigned N, R1 fac[], R2 fs[], void *mem/* = wmem*/){
  int res = 0;
  int sz = 0;
  int i;
  int k;
  unsigned*val;
  unsigned*valtmp;
  unsigned pf;
  unsigned n;
  if(N <= 1){
    return 0;
  }
  walloc1d(&val, 128, &mem);
  walloc1d(&valtmp, 128, &mem);
  while(N%2==0){
    val[res++] = 2;
    N /= 2;
  }
  while(N%3==0){
    val[res++] = 3;
    N /= 3;
  }
  while(N%5==0){
    val[res++] = 5;
    N /= 5;
  }
  if(N > 1){
    valtmp[sz++] = N;
  }
  while(sz){
    while(sz && isPrime32(valtmp[sz-1])){
      val[res] = valtmp[sz-1];
      res++;
      sz--;
    }
    if(sz==0){
      break;
    }
    n = valtmp[sz-1];
    if(n < FACTOR_PRE_CALC_SIZE){
      while(n > 1){
        val[res++] = factor_hasprime_table[n];
        n /= factor_hasprime_table[n];
      }
      sz--;
    }
    else{
      pf = Factor32_rho(n);
      valtmp[sz-1] = pf;
      valtmp[sz] = n / pf;
      sz++;
    }
  }
  sortA_L(res, val, mem);
  k = 0;
  for(i=(0);i<(res);i++){
    if(k && fac[k-1] == val[i]){
      fs[k-1]++;
      continue;
    }
    fac[k] = val[i];
    fs[k] = 1;
    k++;
  }
  res = k;
  return res;
}
unsigned long long Factor64_rho(unsigned long long n){
  static Rand rnd;
  const int step = 16;
  int i;
  int s;
  int nx;
  int mx;
  __uint128_t x;
  __uint128_t y;
  __uint128_t memo;
  __uint128_t c;
  __uint128_t m;
  unsigned long long g;
  long long lm;
  lm =min_L(1ULL<<30, n - 1);
  for(;;){
    x = y = rnd.get(1LL, lm);
    c = rnd.get(1LL, lm);
    g = 1;
    for(nx=1;g==1;nx<<=1){
      x = y;
      for(i=(0);i<(nx);i++){
        y = (y * y + c) % n;
      }
      for(s=0;s<nx&&g==1;s+=step){
        m = 1;
        memo = y;
        mx =min_L(step, nx-s);
        for(i=(0);i<(mx);i++){
          y = (y * y + c) % n;
          if(x >= y){
            m = (m * (x - y)) % n;
          }
          else{
            m = (m * (y - x)) % n;
          }
        }
        g =GCD_L(n, m);
        if(g != 1){
          if(g != n){
            return g;
          }
          y = memo;
          for(;;){
            y = (y * y + c) % n;
            if(x >= y){
              m = x - y;
            }
            else{
              m = y - x;
            }
            g =GCD_L(n, m);
            if(g == n){
              break;
            }
            if(g != 1){
              return g;
            }
          }
        }
      }
    }
  }
  return 0;
}
template<class R1, class R2> int Factor64(unsigned long long N, R1 fac[], R2 fs[], void *mem/* = wmem*/){
  int res = 0;
  int sz = 0;
  int i;
  int k;
  unsigned long long*val;
  unsigned long long*valtmp;
  unsigned long long pf;
  unsigned long long n;
  if(N <= 1){
    return 0;
  }
  walloc1d(&val, 128, &mem);
  walloc1d(&valtmp, 128, &mem);
  while(N%2==0){
    val[res++] = 2;
    N /= 2;
  }
  while(N%3==0){
    val[res++] = 3;
    N /= 3;
  }
  while(N%5==0){
    val[res++] = 5;
    N /= 5;
  }
  if(N > 1){
    valtmp[sz++] = N;
  }
  while(sz){
    while(sz && isPrime64(valtmp[sz-1])){
      val[res] = valtmp[sz-1];
      res++;
      sz--;
    }
    if(sz==0){
      break;
    }
    n = valtmp[sz-1];
    if(n < FACTOR_PRE_CALC_SIZE){
      while(n > 1){
        val[res++] = factor_hasprime_table[n];
        n /= factor_hasprime_table[n];
      }
      sz--;
    }
    else if(n < (1ULL<<32)){
      pf = Factor32_rho(n);
      valtmp[sz-1] = pf;
      valtmp[sz] = n / pf;
      sz++;
    }
    else{
      pf = Factor64_rho(n);
      valtmp[sz-1] = pf;
      valtmp[sz] = n / pf;
      sz++;
    }
  }
  sortA_L(res, val, mem);
  k = 0;
  for(i=(0);i<(res);i++){
    if(k && fac[k-1] == val[i]){
      fs[k-1]++;
      continue;
    }
    fac[k] = val[i];
    fs[k] = 1;
    k++;
  }
  res = k;
  return res;
}
void Factor32_init(void){
  int i;
  int j;
  int k;
  k =Isqrt_f_L(FACTOR_PRE_CALC_SIZE);
  for(i=(2);i<(FACTOR_PRE_CALC_SIZE);i++){
    factor_hasprime_table[i] = i;
  }
  for(i=(2);i<(k+1);i++){
    if(factor_hasprime_table[i]==i){
      for(j=(i*i);j<(FACTOR_PRE_CALC_SIZE);j+=(i)){
        factor_hasprime_table[j] = i;
      }
    }
  }
}
template<class T, class R> int Divisor(T N, R res[], void *mem/* = wmem*/){
  int i;
  int j;
  int k;
  int s;
  int sz = 0;
  T*fc;
  int*fs;
  int fsz;
  walloc1d(&fc, 128, &mem);
  walloc1d(&fs, 128, &mem);
  fsz = Factor(N, fc, fs, mem);
  res[sz++] = 1;
  for(i=(0);i<(fsz);i++){
    s = sz;
    k = s * fs[i];
    for(j=(0);j<(k);j++){
      res[sz++] = res[j] * fc[i];
    }
  }
  sort(res, res+sz);
  return sz;
}
// cLay version 20210708-1

// --- original code ---
// ll euler(ll a){
// 	ll p=a;
// 	ll i=2;
// 	while(a>1){
// 		if(a%i==0){
// 			p-=p/i;
// 		}
// 		while(a%i==0){
// 			a/=i;
// 		}
// 		++i;
// 		if(i*i>a){
// 			i=a;
// 		}
// 	}
// 	return p;
// }
// 
// 
// ll d[1d5];
// {
// 	ll@t;
// 	rep(t){
// 		ll@n;
// 		while(n%2==0) n/=2;
// 		while(n%5==0) n/=5;
// 		if(n==1) wt(1),continue;
// 		Divisor(euler(n),d);
// 		modint x;
// 		x.setmod(n);
// 		ll a=0;
// 		while(1){
// 			x=10;
// 			x**=d[a];
// 			if(x==1) break;
// 			++a;
// 		}
// 		wt(d[a]);
// 	}
// }
// 
0