結果
問題 | No.1200 お菓子配り-3 |
ユーザー | chineristAC |
提出日時 | 2021-07-09 03:09:03 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 370 ms / 4,000 ms |
コード長 | 3,133 bytes |
コンパイル時間 | 159 ms |
コンパイル使用メモリ | 81,908 KB |
実行使用メモリ | 79,244 KB |
最終ジャッジ日時 | 2024-07-01 13:51:36 |
合計ジャッジ時間 | 6,476 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 47 ms
56,992 KB |
testcase_01 | AC | 47 ms
56,668 KB |
testcase_02 | AC | 50 ms
62,436 KB |
testcase_03 | AC | 48 ms
56,916 KB |
testcase_04 | AC | 47 ms
57,960 KB |
testcase_05 | AC | 47 ms
57,524 KB |
testcase_06 | AC | 48 ms
57,104 KB |
testcase_07 | AC | 67 ms
70,472 KB |
testcase_08 | AC | 68 ms
70,056 KB |
testcase_09 | AC | 64 ms
68,768 KB |
testcase_10 | AC | 63 ms
68,152 KB |
testcase_11 | AC | 65 ms
69,580 KB |
testcase_12 | AC | 146 ms
78,692 KB |
testcase_13 | AC | 142 ms
78,476 KB |
testcase_14 | AC | 145 ms
78,556 KB |
testcase_15 | AC | 138 ms
78,748 KB |
testcase_16 | AC | 140 ms
78,612 KB |
testcase_17 | AC | 190 ms
79,068 KB |
testcase_18 | AC | 202 ms
78,628 KB |
testcase_19 | AC | 148 ms
78,508 KB |
testcase_20 | AC | 250 ms
78,928 KB |
testcase_21 | AC | 248 ms
79,088 KB |
testcase_22 | AC | 276 ms
78,928 KB |
testcase_23 | AC | 260 ms
79,244 KB |
testcase_24 | AC | 251 ms
78,820 KB |
testcase_25 | AC | 264 ms
79,200 KB |
testcase_26 | AC | 260 ms
78,860 KB |
testcase_27 | AC | 47 ms
56,428 KB |
testcase_28 | AC | 370 ms
78,776 KB |
testcase_29 | AC | 269 ms
78,804 KB |
testcase_30 | AC | 253 ms
78,556 KB |
testcase_31 | AC | 46 ms
56,904 KB |
testcase_32 | AC | 47 ms
56,676 KB |
ソースコード
import sys,random,bisect from collections import deque,defaultdict from heapq import heapify,heappop,heappush from itertools import permutations from math import gcd,log input = lambda :sys.stdin.readline().rstrip() mi = lambda :map(int,input().split()) li = lambda :list(mi()) def isPrimeMR(n): if n==1: return 0 d = n - 1 d = d // (d & -d) L = [2, 3, 5, 7, 11, 13, 17] if n in L: return True for a in L: t = d y = pow(a, t, n) if y == 1: continue while y != n - 1: y = (y * y) % n if y == 1 or t == n - 1: return 0 t <<= 1 return 1 def findFactorRho(n): from math import gcd m = 1 << n.bit_length() // 8 for c in range(1, 99): f = lambda x: (x * x + c) % n y, r, q, g = 2, 1, 1, 1 while g == 1: x = y for i in range(r): y = f(y) k = 0 while k < r and g == 1: ys = y for i in range(min(m, r - k)): y = f(y) q = q * abs(x - y) % n g = gcd(q, n) k += m r <<= 1 if g == n: g = 1 while g == 1: ys = f(ys) g = gcd(abs(x - ys), n) if g < n: if isPrimeMR(g): return g elif isPrimeMR(n // g): return n // g return findFactorRho(g) def primeFactor(n): i = 2 ret = {} rhoFlg = 0 while i*i <= n: k = 0 while n % i == 0: n //= i k += 1 if k: ret[i] = k i += 1 + i % 2 if i == 101 and n >= 2 ** 20: while n > 1: if isPrimeMR(n): ret[n], n = 1, 1 else: rhoFlg = 1 j = findFactorRho(n) k = 0 while n % j == 0: n //= j k += 1 ret[j] = k if n > 1: ret[n] = 1 if rhoFlg: ret = {x: ret[x] for x in sorted(ret)} return ret def divisors(n): res = [1] prime = primeFactor(n) for p in prime: newres = [] for d in res: for j in range(prime[p]+1): newres.append(d*p**j) res = newres return res for _ in range(int(input())): x,y = map(int,input().split()) div = divisors(x+y) count = 0 for d in div: if x!=y: if d==1 or d==2: continue if (x+y)%d!=0 or (x-y)%(d-2)!=0: continue s = (x + y) // d t = (x - y) // (d-2) if (s + t) % 2 !=0: continue b = (s + t) // 2 c = (s - t) // 2 if b>0 and c>0: count += 1 else: if d==1: continue if d==2: s = (x + y) // d count += s - 1 else: if ((x+y) // d) %2 ==0: count += 1 print(count)