結果
問題 | No.1243 約数加算 |
ユーザー | chineristAC |
提出日時 | 2021-07-09 03:33:02 |
言語 | PyPy3 (7.3.15) |
結果 |
RE
|
実行時間 | - |
コード長 | 3,108 bytes |
コンパイル時間 | 739 ms |
コンパイル使用メモリ | 82,440 KB |
実行使用メモリ | 70,784 KB |
最終ジャッジ日時 | 2024-07-01 13:51:57 |
合計ジャッジ時間 | 2,967 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 48 ms
56,064 KB |
testcase_01 | RE | - |
testcase_02 | RE | - |
testcase_03 | RE | - |
testcase_04 | RE | - |
testcase_05 | RE | - |
testcase_06 | RE | - |
testcase_07 | RE | - |
testcase_08 | AC | 67 ms
70,784 KB |
testcase_09 | AC | 47 ms
56,192 KB |
ソースコード
import sys,random,bisect from collections import deque,defaultdict from heapq import heapify,heappop,heappush from itertools import permutations from math import gcd,log input = lambda :sys.stdin.readline().rstrip() mi = lambda :map(int,input().split()) li = lambda :list(mi()) def isPrimeMR(n): if n==1: return 0 d = n - 1 d = d // (d & -d) L = [2, 3, 5, 7, 11, 13, 17] if n in L: return True for a in L: t = d y = pow(a, t, n) if y == 1: continue while y != n - 1: y = (y * y) % n if y == 1 or t == n - 1: return 0 t <<= 1 return 1 def findFactorRho(n): from math import gcd m = 1 << n.bit_length() // 8 for c in range(1, 99): f = lambda x: (x * x + c) % n y, r, q, g = 2, 1, 1, 1 while g == 1: x = y for i in range(r): y = f(y) k = 0 while k < r and g == 1: ys = y for i in range(min(m, r - k)): y = f(y) q = q * abs(x - y) % n g = gcd(q, n) k += m r <<= 1 if g == n: g = 1 while g == 1: ys = f(ys) g = gcd(abs(x - ys), n) if g < n: if isPrimeMR(g): return g elif isPrimeMR(n // g): return n // g return findFactorRho(g) def primeFactor(n): i = 2 ret = {} rhoFlg = 0 while i*i <= n: k = 0 while n % i == 0: n //= i k += 1 if k: ret[i] = k i += 1 + i % 2 if i == 101 and n >= 2 ** 20: while n > 1: if isPrimeMR(n): ret[n], n = 1, 1 else: rhoFlg = 1 j = findFactorRho(n) k = 0 while n % j == 0: n //= j k += 1 ret[j] = k if n > 1: ret[n] = 1 if rhoFlg: ret = {x: ret[x] for x in sorted(ret)} return ret def divisors(n): res = [1] prime = primeFactor(n) for p in prime: newres = [] for d in res: for j in range(prime[p]+1): newres.append(d*p**j) res = newres return res for _ in range(int(input())): #a = random.randint(1,10) #b = random.randint(10**17,10**18) a,b = mi() A,B = a,b g = gcd(a,b) a,b = a//g,b//g res = [] for i in range(59,-1,-1): if a>>i & 1 and b>>i & 1: a -= 2**i b -= 2**i elif not (a>>i & 1 == 0 and b>>i & 1 == 0): break if a: while 2*a < b: res.append(a&(-a)) a += a&(-a) b -= a for i in range(59,-1,-1): if b>>i & 1: res.append(1<<i) for i in range(len(res)): res[i] *= g print(len(res)) print(*res) for g in res: assert A%g==0 A += g assert A==B assert len(res) <= 120