結果

問題 No.1593 Perfect Distance
ユーザー ymduuymduu
提出日時 2021-07-09 21:28:42
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
CE  
(最新)
AC  
(最初)
実行時間 -
コード長 62,242 bytes
コンパイル時間 5,408 ms
コンパイル使用メモリ 441,996 KB
最終ジャッジ日時 2024-11-15 01:30:55
合計ジャッジ時間 5,880 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。

コンパイルメッセージ
main.cpp:40:41: error: redefinition of 'T boost::qvm::sqrt(T) [with T = long double]'
   40 |                 template <> long double sqrt<long double>(long double a)
      |                                         ^~~~~~~~~~~~~~~~~
In file included from /boost_git/boost/qvm/mat_operations.hpp:14,
                 from main.cpp:15:
/boost_git/boost/qvm/math.hpp:96:50: note: 'T boost::qvm::sqrt(T) [with T = long double]' previously declared here
   96 | template <> BOOST_QVM_INLINE_TRIVIAL long double sqrt<long double>( long double x ) { return ::sqrtl(x); }
      |                                                  ^~~~~~~~~~~~~~~~~
main.cpp:44:41: error: redefinition of 'T boost::qvm::sin(T) [with T = long double]'
   44 |                 template <> long double sin<long double>(long double a)
      |                                         ^~~~~~~~~~~~~~~~
/boost_git/boost/qvm/math.hpp:86:50: note: 'T boost::qvm::sin(T) [with T = long double]' previously declared here
   86 | template <> BOOST_QVM_INLINE_TRIVIAL long double sin<long double>( long double x ) { return ::sinl(x); }
      |                                                  ^~~~~~~~~~~~~~~~
main.cpp:48:41: error: redefinition of 'T boost::qvm::cos(T) [with T = long double]'
   48 |                 template <> long double cos<long double>(long double a)
      |                                         ^~~~~~~~~~~~~~~~
/boost_git/boost/qvm/math.hpp:85:50: note: 'T boost::qvm::cos(T) [with T = long double]' previously declared here
   85 | template <> BOOST_QVM_INLINE_TRIVIAL long double cos<long double>( long double x ) { return ::cosl(x); }
      |                                                  ^~~~~~~~~~~~~~~~
main.cpp: In member function 'std::vector<long long int> StressTest::create_permutation(long long int)':
main.cpp:2223:9: warning: no return statement in function returning non-void [-Wreturn-type]
 2223 |         }
      |         ^
main.cpp: In member function 'Graph StressTest::create_tree(long 

ソースコード

diff #

#define _CRT_SECURE_NO_WARNINGS
#pragma warning(disable: 4244) // 最悪をします
// AtCoder の時だけ ACL をインクルードしてマクロを定義
#if __has_include(<atcoder/all>)
	#include <atcoder/all>
	#define ACL_ENABLED
#endif

#if __has_include(<boost/multiprecision/cpp_int.hpp>)
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/qvm/mat.hpp>
#include <boost/qvm/mat_operations.hpp>
#include <boost/qvm/quat.hpp>
#include <boost/qvm/quat_operations.hpp>
#include <boost/qvm/to_string.hpp>
#include <boost/qvm/vec.hpp>
#include <boost/qvm/vec_access.hpp>
#include <boost/qvm/vec_mat_operations.hpp>
#include <boost/qvm/vec_operations.hpp>
#include <boost/range/algorithm/for_each.hpp>
#include <boost/range/irange.hpp>

#define BOOST_ENABLED 
using namespace boost::multiprecision;
namespace ublas = boost::numeric::ublas;
namespace qvm = boost::qvm;

using Vector3D = boost::qvm::vec<long double, 3>;
using Quaternion = boost::qvm::quat<long double>;
using Matrix3x3 = boost::qvm::mat<long double, 3, 3>;
using Matrix4x4 = boost::qvm::mat<long double, 4, 4>;
// constexpr long double PI = boost::math::constants::pi<long double>();

#if defined(ACL_ENABLED) && defined(ONLINE_JUDGE) // TORIAEZU: AtCoder の ONLINE_JUDGE 環境でだけ long double の特殊化を入れる。(Boost 1_73 未満のバージョンで qvm を使うためのワークアラウンド)
namespace boost {
	namespace qvm {
		template <> long double sqrt<long double>(long double a)
		{
			return sqrtl(a);
		}
		template <> long double sin<long double>(long double a)
		{
			return sinl(a);
		}
		template <> long double cos<long double>(long double a)
		{
			return cosl(a);
		}
	}
}
#endif

#endif

#include <iostream>
#include <cmath>
#include <algorithm>
#include <vector>
#include <numeric>
#include <queue>
#include <stack>
#include <map> 
#include <set>
#include <string>
#include <functional>
#include <list>
#include <random>
#include <time.h>
#include <iomanip>
#include <assert.h>
#include <numeric>
#include <sstream>
#include <memory>

#define BIT(nr) (1UL << (nr))
#define int long long
//#define ll long long
#define double long double
#define mod 1000000007
#define MAXN (int)1e+5 * 2+1
#define LL_MAX 9223372036854775807	//ない環境用
#define LL_HALFMAX 9223372036854775807 / 2	//ない環境用
#define MIN -(9223372036854775807 / 2)
#define REP(i,a,n) for(int i=(a); i<(int)(n); i++)
#define rep(i,n) REP(i,0,n)
#define FOR(it,c) for(__typeof((c).begin()) it=(c).begin(); it!=(c).end(); ++it)
#define ALLOF(c) (c).begin(), (c).end()
#define REPS(i,x) for(int i=1;i<=(int)(x);i++)
#define RREP(i,x) for(int i=((int)(x)-1);i>=0;i--)
#define RREPS(i,x) for(int i=((int)(x));i>0;i--)
#define repl(i,a,b) for(int i=(int)(a);i<(int)(b);i++)
#define mp make_pair
template<typename T1, typename T2> inline void chmin(T1 & a, T2 b) { if (a > b) a = b; }
template<typename T1, typename T2> inline void chmax(T1& a, T2 b) { if (a < b) a = b; }

const double PI = 3.14159265358979323846;

// map が k と同値のキーを持つ要素 e を持っている場合、 e.second に対して chmin(e.second, v) そうでなければ、そのキーに対応する値に v を挿入
// 挿入された(キー 存在しない)場合には true, 代入された(キー 存在)場合には false 
template<typename MAP, typename T1, typename T2>
bool insert_or_chmin(MAP& map, T1 k, T2 v) {
	if (map.find(k) == map.end()) {
		// キーが存在しないので、挿入
		map[k] = v;
		return true;
	}
	else {
		// キーが存在するので、 chmin
		chmin(map[k], v);
		return false;
	}
}

// 上の chmax 版
template<typename MAP, typename T1, typename T2>
bool insert_or_chmax(MAP& map, T1 k, T2 v) {
	if (map.find(k) == map.end()) {
		// キーが存在しないので、挿入
		map[k] = v;
		return true;
	}
	else {
		// キーが存在するので、 chmax
		chmax(map[k], v);
		return false;
	}
}


using namespace std;
using pint = pair<int, int>;

//デバッグ用カッコの有無
#ifdef DEBUG
template <class T>ostream &operator<<(ostream &o, const vector<T>&v)
{
	o << "{"; for (int i = 0; i<(int)v.size(); i++)o << (i>0 ? ", " : "") << v[i]; o << "}"; return o;
}
#endif // DEBUG

template <class T>ostream &operator<<(ostream &o, const vector<T>&v)
{
	for (int i = 0; i<(int)v.size(); i++)o << (i>0 ? " " : "") << v[i]; return o;
}

int dx[4] = { 0, 1, 0, -1 }; // x軸方向への変位
int dy[4] = { 1, 0, -1, 0 }; // y軸方向への変位

int dxp[4] = { 0, 1 }; // x軸方向への変位(正のみ)
int dyp[4] = { 1, 0 }; // y軸方向への変位(負のみ)

using Weight = int;
using Flow = int;
struct Edge {
	int src, dst;

	// libalgo のものに追加、メンバを追加するだけなので互換性は崩さないはず、逆辺のG[e.dstの]インデックスを保持
	int rev;
	Weight weight;
	Flow cap;
	Edge() : src(0), dst(0), weight(0) {}
	Edge(int s, int d, Weight w) : src(s), dst(d), weight(w) {}
};
using Edges = std::vector<Edge>;
using Graph = std::vector<Edges>;
using Array = std::vector<Weight>;
using Matrix = std::vector<Array>;

void add_edge(Graph& g, int a, int b, Weight w = 1) {
	g[a].emplace_back(a, b, w);
	g[b].emplace_back(b, a, w);
}
void add_arc(Graph& g, int a, int b, Weight w = 1) { g[a].emplace_back(a, b, w); }

// 辺がメンバに src と dst を持つ隣接リスト表記のグラフをダンプ(https://hello-world-494ec.firebaseapp.com/) に投げることを想定
template <typename T>
void dump_graph(T G) {
	int V = G.size();
	int E = 0;
	ostringstream os;

	for (auto es : G) {
		for (auto e : es) {
			E++;
			os << e.src << " " << e.dst << "\n";
		}
	}
	cout << V << " " << E << "\n";
	cout << os.str() << "\n";
}

// グリッドからグラフを構築
// @pre: gはノード数H*Wのグラフ
void create_from_grid(Graph& g, int h, int w, vector<string>& mapData, char wall) {
	//グラフ構築 O(HW)
	rep(y, h) {
		rep(x, w) {
			if (mapData[y][x] == wall) {
				continue;
			}

			int id = y * w + x;
			//右と下(変位が正)のみ見る(辺の重複を回避するため)
			rep(i, 2) {
				int nx = x + dxp[i];
				int ny = y + dyp[i];
				int nid = ny * w + nx;
				if (nx < 0 || nx >= w) {
					continue;
				}
				if (ny < 0 || ny >= h) {
					continue;
				}
				if (mapData[ny][nx] != wall) {
					add_edge(g, id, nid);
				}
			}
		}
	}
}

// マスに重みが定義されるグリッドから重み付きグラフを構築、ダイクストラなどをするとき始点のこすとは入らないことに注意
// @pre: gはノード数H*Wのグラフ
void create_weighted_from_grid(Graph& g, int h, int w, vector<vector<int>>& mapData) {
	//グラフ構築 O(HW)
	rep(y, h) {
		rep(x, w) {
			int id = y * w + x;
			// こんどは全方向見る(行きと帰りで重みが違うはず)
			rep(i, 4) {
				int nx = x + dx[i];
				int ny = y + dy[i];
				int nid = ny * w + nx;
				if (nx < 0 || nx >= w) {
					continue;
				}
				if (ny < 0 || ny >= h) {
					continue;
				}

				// 移動先のコストを足す
				add_arc(g, id, nid, mapData[ny][nx]);
			}
		}
	}
}

// グリッドにおいて座標をグラフのノード番号に変換する
int point_to_node_num(int x, int y, int W) {
	return y * W + x;
}

struct uf_tree {
	std::vector<int> parent;
	int __size;
	uf_tree(int size_) : parent(size_, -1), __size(size_) {}
	void unite(int x, int y) {
		if ((x = find(x)) != (y = find(y))) {
			if (parent[y] < parent[x]) std::swap(x, y);
			parent[x] += parent[y];
			parent[y] = x;
			__size--;
		}
	}
	bool is_same(int x, int y) { return find(x) == find(y); }
	int find(int x) { return parent[x] < 0 ? x : parent[x] = find(parent[x]); }
	int size(int x) { return -parent[find(x)]; }
	int size() { return __size; }
};



//!!!問題をちゃんと読む!!!
//!!!問題をちゃんと読め!!!
//!!!問題は読みましたか?!!!

template <signed M, unsigned T>
struct mod_int {
	constexpr static signed MODULO = M;
	constexpr static unsigned TABLE_SIZE = T;

	signed x;

	mod_int() : x(0) {}

	mod_int(long long y) : x(static_cast<signed>(y >= 0 ? y % MODULO : MODULO - (-y) % MODULO)) {}

	mod_int(signed y) : x(y >= 0 ? y % MODULO : MODULO - (-y) % MODULO) {}

	mod_int& operator+=(const mod_int& rhs) {
		if ((x += rhs.x) >= MODULO) x -= MODULO;
		return *this;
	}

	mod_int& operator-=(const mod_int& rhs) {
		if ((x += MODULO - rhs.x) >= MODULO) x -= MODULO;
		return *this;
	}

	mod_int& operator*=(const mod_int& rhs) {
		x = static_cast<signed>(1LL * x * rhs.x % MODULO);
		return *this;
	}

	mod_int& operator/=(const mod_int& rhs) {
		x = static_cast<signed>((1LL * x * rhs.inv().x) % MODULO);
		return *this;
	}

	mod_int operator-() const { return mod_int(-x); }

	mod_int operator+(const mod_int& rhs) const { return mod_int(*this) += rhs; }

	mod_int operator-(const mod_int& rhs) const { return mod_int(*this) -= rhs; }

	mod_int operator*(const mod_int& rhs) const { return mod_int(*this) *= rhs; }

	mod_int operator/(const mod_int& rhs) const { return mod_int(*this) /= rhs; }

	bool operator<(const mod_int& rhs) const { return x < rhs.x; }

	mod_int inv() const {
		assert(x != 0);
		if (x <= static_cast<signed>(TABLE_SIZE)) {
			if (_inv[1].x == 0) prepare();
			return _inv[x];
		}
		else {
			signed a = x, b = MODULO, u = 1, v = 0, t;
			while (b) {
				t = a / b;
				a -= t * b;
				std::swap(a, b);
				u -= t * v;
				std::swap(u, v);
			}
			return mod_int(u);
		}
	}

	mod_int pow(long long t) const {
		assert(!(x == 0 && t == 0));
		mod_int e = *this, res = mod_int(1);
		for (; t; e *= e, t >>= 1)
			if (t & 1) res *= e;
		return res;
	}

	mod_int fact() {
		if (_fact[0].x == 0) prepare();
		return _fact[x];
	}

	mod_int inv_fact() {
		if (_fact[0].x == 0) prepare();
		return _inv_fact[x];
	}

	mod_int choose(mod_int y) {
		assert(y.x <= x);
		return this->fact() * y.inv_fact() * mod_int(x - y.x).inv_fact();
	}

	static mod_int _inv[TABLE_SIZE + 1];

	static mod_int _fact[TABLE_SIZE + 1];

	static mod_int _inv_fact[TABLE_SIZE + 1];

	static void prepare() {
		_inv[1] = 1;
		for (int i = 2; i <= (int)TABLE_SIZE; ++i) {
			_inv[i] = 1LL * _inv[MODULO % i].x * (MODULO - MODULO / i) % MODULO;
		}
		_fact[0] = 1;
		for (unsigned i = 1; i <= TABLE_SIZE; ++i) {
			_fact[i] = _fact[i - 1] * signed(i);
		}
		_inv_fact[TABLE_SIZE] = _fact[TABLE_SIZE].inv();
		for (int i = (int)TABLE_SIZE - 1; i >= 0; --i) {
			_inv_fact[i] = _inv_fact[i + 1] * (i + 1);
		}
	}
};

template <signed M, unsigned F>
std::ostream& operator<<(std::ostream& os, const mod_int<M, F>& rhs) {
	return os << rhs.x;
}

template <signed M, unsigned F>
std::istream& operator >> (std::istream& is, mod_int<M, F>& rhs) {
	long long s;
	is >> s;
	rhs = mod_int<M, F>(s);
	return is;
}

template <signed M, unsigned F>
mod_int<M, F> mod_int<M, F>::_inv[TABLE_SIZE + 1];

template <signed M, unsigned F>
mod_int<M, F> mod_int<M, F>::_fact[TABLE_SIZE + 1];

template <signed M, unsigned F>
mod_int<M, F> mod_int<M, F>::_inv_fact[TABLE_SIZE + 1];

template <signed M, unsigned F>
bool operator==(const mod_int<M, F>& lhs, const mod_int<M, F>& rhs) {
	return lhs.x == rhs.x;
}

template <int M, unsigned F>
bool operator!=(const mod_int<M, F>& lhs, const mod_int<M, F>& rhs) {
	return !(lhs == rhs);
}

const signed MF = 1000010;
const signed MOD = 1000000007;

using mint = mod_int<MOD, MF>;

mint binom(int n, int r) { return (r < 0 || r > n || n < 0) ? 0 : mint(n).choose(r); }

mint fact(int n) { return mint(n).fact(); }

mint inv_fact(int n) { return mint(n).inv_fact(); }

//出典 http://beet-aizu.hatenablog.com/entry/2017/12/01/225955
/*
コンストラクタ引数説明
int n_
要素数。
f
2つの要素Tをマージするための関数。
区間MAX区間更新の時: max
区間Sum区間Addの時: +
g
1つの要素Tに作用素Eを適用するための関数。
区間MAX区間更新の時: =
区間Sum区間Addの時: +
h
2つの作用素Eをマージするための関数。
区間MAX区間更新の時: =
区間Sum区間Addの時: +
T d1
演算fの単位元。
区間MAX区間更新の時: -INF 
区間Sum区間Addの時: 0
E d0,
g, hの単位元。
区間MAX区間更新の時: 定義域外のどこか
区間Sum区間Addの時: 0
vector<T> v = vector<T>()
セグ木を構成するときのvector
P p = [](E a, int b) {return a; }
区間の長さbを引数に取り、区間の長さによって変化する作用素E'を返す関数。
例えば、区間MAX区間Addの時なんかは区間長によって足すべき数が変化するので必要
区間Sum区間Addの時: *

//具体例
//区間chmin, 区間min
auto myMin = [](int a, int b) {return min(a, b); };
SegmentTree<int, int> seg(n, myMin, myMin, myMin, LL_HALFMAX, LL_HALFMAX);
//区間update、区間min
SegmentTree<int, int> seg(n, myMin, myMin, myMin, LL_HALFMAX, LL_HALFMAX);
//区間Add、区間Sum
vector<int> v(0, N + 1);
SegmentTree<int, int> segtree(N + 1, plus<int>(), plus<int>(), plus<int>(), 0, 0, v, [](int a, int b) {return a * b; });
//区間Add、区間Min
vector<int> v(0, N + 1);
SegmentTree<int, int> segtree(N + 1, myMin, plus<int>(), plus<int>(), LL_HALFMAX, 0, v, [](int a, int b) {return a; });
*/

template <typename T, typename E>
struct SegmentTree {
	typedef function<T(T, T)> F;
	typedef function<T(T, E)> G;
	typedef function<E(E, E)> H;
	typedef function<E(E, int)> P;
	int n;
	F f;
	G g;
	H h;
	P p;
	T d1;
	E d0;
	vector<T> dat;
	vector<E> laz;
	SegmentTree(int n_, F f, G g, H h, T d1, E d0,
		vector<T> v = vector<T>(), P p = [](E a, int b) {return a; }) :
		f(f), g(g), h(h), d1(d1), d0(d0), p(p) {
		init(n_);
		if (n_ == (int)v.size()) build(n_, v);
	}
	//初期化。要素配列と遅延配列を2*n-1個にする
	void init(int n_) {
		n = 1;
		while (n < n_) n *= 2;
		dat.clear();
		dat.resize(2 * n - 1, d1);
		laz.clear();
		laz.resize(2 * n - 1, d0);
	}
	//既存のvectorからセグ木を構築
	void build(int n_, vector<T> v) {
		for (int i = 0; i < n_; i++) dat[i + n - 1] = v[i];
		for (int i = n - 2; i >= 0; i--)
			dat[i] = f(dat[i * 2 + 1], dat[i * 2 + 2]);
	}
	//ノードを評価する。
	inline void eval(int len, int k) {
		//遅延配列に単位元が入ってたら評価済みなのでおしまい
		if (laz[k] == d0) return;
		//葉ノードでないなら遅延伝播する
		if (k * 2 + 1 < n * 2 - 1) {
			//h: 2つの作用素を引数に取り合成した作用素を返す関数
			laz[k * 2 + 1] = h(laz[k * 2 + 1], laz[k]);
			laz[k * 2 + 2] = h(laz[k * 2 + 2], laz[k]);
		}
		//p: このノードに対応する区間長と作用素を引数に取り、区間長に対応する作用素を返す関数
		//dat[k] にlaz に溜めていた作用素を適用(g: 要素型と作用素型を引数に取り、要素に作用素を作用させた結果を返す関数、ここでの作用素とは区間Sum区間Addなら (+ 3) とか)
		dat[k] = g(dat[k], p(laz[k], len));
		//適用し終わったので遅延配列をクリア
		laz[k] = d0;
	}
	//[l,r)の区間を再帰的に見ながら0-indexedの[a, b)を更新する
	T update(int a, int b, E x, int k, int l, int r) {
		//先に評価
		eval(r - l, k);
		//範囲外ならなにもしないでそのノードが持つ値を返す
		if (r <= a || b <= l) return dat[k];
		//完全被覆なら既に遅延配列に入っている作用素と追加したい作用素をマージした後にそれを要素に作用させた結果を返す、pは区間長に対応する作用素を得るための(ry
		if (a <= l && r <= b) {
			laz[k] = h(laz[k], x);
			return g(dat[k], p(laz[k], r - l));
		}
		//完全被覆でも範囲外でもないなら(中途半端にかぶっているなら)完全被覆と範囲外の境界が見えるまで木を潜って変化後の値を得る
		return dat[k] = f(update(a, b, x, k * 2 + 1, l, (l + r) / 2),
			update(a, b, x, k * 2 + 2, (l + r) / 2, r));
	}
	T update(int a, int b, E x) {
		return update(a, b, x, 0, 0, n);
	}

	T update(int a, E x) {
		return update(a, a + 1, x);
	}

	T query(int a, int b, int k, int l, int r) {
		eval(r - l, k);
		//範囲外なら単位元を返す
		if (r <= a || b <= l) return d1;
		//完全被覆ならそのまま返す
		if (a <= l && r <= b) return dat[k];
		//一部被覆なら完全被覆と範囲外に分かれるまで木を潜る
		T vl = query(a, b, k * 2 + 1, l, (l + r) / 2);
		T vr = query(a, b, k * 2 + 2, (l + r) / 2, r);
		return f(vl, vr);
	}
	//0-indexedで[a, b)の区間*を求める
	T query(int a, int b) {
		return query(a, b, 0, 0, n);
	}

	T query(int a) {
		return query(a, a + 1, 0, 0, n);
	}

	void debug_print(int num) {
		vector<T> v;
		rep(i, num) {
			v.push_back(query(i));
		}
		cout << "{" << v << "}\n";
	}
};

//座標圧縮

class compress {
public:
	map<int, int> zip;
	vector<int> unzip;

	compress(vector<int> x)
	{
		sort(x.begin(), x.end());
		x.erase(unique(x.begin(), x.end()), x.end());
		for (int i = 0; i < x.size(); i++) {
			zip[x[i]] = i;
			unzip.push_back(x[i]);
		}
	}
};


int euclidean_gcd(int a, int b) {
	while (1) {
		if (a < b) swap(a, b);
		if (!b) break;
		a %= b;
	}
	return a;
}

//https://ei1333.github.io/luzhiled/snippets/dp/cumulative-sum-2d.html
template< class T >
struct CumulativeSum2D {
	vector< vector< T > > data;

	CumulativeSum2D(int W, int H) : data(W + 1, vector< int >(H + 1, 0)) {}

	void add(int x, int y, T z) {
		++x, ++y;
		if (x >= data.size() || y >= data[0].size()) return;
		data[x][y] += z;
	}

	void build() {
		for (int i = 1; i < data.size(); i++) {
			for (int j = 1; j < data[i].size(); j++) {
				data[i][j] += data[i][j - 1] + data[i - 1][j] - data[i - 1][j - 1];
			}
		}
	}

	T query(int sx, int sy, int gx, int gy) {
		return (data[gx][gy] - data[sx][gy] - data[gx][sy] + data[sx][sy]);
	}
};

// 自作 imos 2D
template<class T>
class Imos2D {
private:
	vector< vector< T > > m_Data;
	int m_W, m_H;
	bool m_Built;

public:

	Imos2D(int W, int H)
		: m_Data(H + 1, vector< T >(W + 1, 0)) 
		, m_W(W)
		, m_H(H)
		, m_Built(false)
	{}

	// [(sx, sy), (tx, ty)) に add を加算する(半開区間)
	void RangeAdd(int sx, int sy, int tx, int ty, int add) {
		assert(!m_Built);
		m_Data[sy][sx]++; // 左上
		m_Data[sy][tx]--; // 右上
		m_Data[ty][sx]--; // 左下
		m_Data[ty][tx]++; // 右下
	}

	void Build() {
		assert(!m_Built);
		// 横方向の累積和
		for (int y = 0; y < m_H; y++) {
			for (int x = 1; x < m_W; x++) {
				m_Data[y][x] += m_Data[y][x - 1];
			}
		}

		// 縦方向の累積和
		for (int y = 1; y < m_H; y++) {
			for (int x = 0; x < m_W; x++) {
				m_Data[y][x] += m_Data[y - 1][x];
			}
		}

		m_Built = true;
	}

	int Get(int x, int y) {
		assert(m_Built);
		return m_Data[y][x];
	}
};

// 自作二次元累積和
// TORIAEZU: コメントアウト
/*
template< class T >
class CumulativeSum2D {
private:
	// 元データ
	vector<vector<T>> m_Data;
	int m_Height;
	int m_Width;
	// 累積和
	vector<vector<T>> m_Cum;

public:
	CumulativeSum2D(int H, int W) :
		m_Cum(H+1, vector<int>(W+1, 0)), 
		m_Height(H),
		m_Width(W)
	{}

	// TORIAEZU: コピー
	CumulativeSum2D(vector<vector<T>> inputData) :
		m_Data(inputData),
		m_Height(static_cast<int>(inputData.size())),
		m_Width(static_cast<int>(inputData[0].size())),
		m_Cum(m_Height + 1, vector<int>(m_Width + 1, 0))
	{
	}

	// 0-indexed
	void Change(int x, int y, T val) {
		assert(x < m_Width);
		assert(y < m_Height);

		m_Data[y][x] = val;
	}

	void Build() {
		for (int i = 0; i < m_Height; i++) {
			for (int j = 0; j < m_Width; j++) {
				m_Cum[i + 1][j + 1] = m_Cum[i][j + 1] + m_Cum[i + 1][j] - m_Cum[i][j] + m_Data[i][j];
			}
		}
	}

	// [sx, gx), [sy, gy) の範囲の和を取得
	T Query(int sx, int sy, int gx, int gy) {
		return m_Cum[gy][gx] - m_Cum[sy][gx] - m_Cum[gy][sx] + m_Cum[sy][sx];
	}
};
*/

//lib
int nC2(int n) {
	return n * (n - 1) / 2;
}

class node {
public:
	int depth;
	int num;

	node(int d, int n) {
		depth = d;
		num = n;
	}
};

template< class T >
struct CumulativeSum {
	vector< T > data;

	CumulativeSum(int sz) : data(sz, 0) {};

	void add(int k, T x) {
		data[k] += x;
	}

	void build() {
		for (int i = 1; i < data.size(); i++) {
			data[i] += data[i - 1];
		}
	}

	T query(int k) {
		if (k < 0) return (0);
		return (data[min(k, (int)data.size() - 1)]);
	}
	//[left, right]の和
	T query(int left, int right) {
		return query(right) - query(left - 1);
	}
};

std::vector<int> eratosthenes_sieve(int n) {
	std::vector<int> ps(n + 1);
	std::iota(ps.begin() + 2, ps.end(), 2);
	for (int i = 2; i * i <= n; ++i)
		if (ps[i])
			for (int j = i * i; j <= n; j += i) ps[j] = 0;
	return ps;
}

std::vector<int> make_primes(int n) {
	std::vector<int> ps = eratosthenes_sieve(n);
	ps.erase(std::remove(ps.begin(), ps.end(), 0), ps.end());
	return ps;
}

// 区間[a, b)の素数判定をする、is_prime[i]: a + i が素数 or not つまり is_prime[i-a] が true: iが素数
std::vector<bool> segment_eratosthenes_sieve(int a, int b) {
	vector<bool> is_prime(b - a, true);
	vector<bool> is_prime_small;
	for (int i = 0; i*i < b; i++)is_prime_small.push_back(true);

	for (int i = 2; i*i < b; i++) {
		if (is_prime_small[i]) {
			for (int j = 2 * i; j*j < b; j += i) {
				is_prime_small[j] = false;	// [2, sqrt(b))のふるい
			}
			// (a + i - 1LL) / i * i a以上の最小のiの倍数
			for (int j = max(2LL, (a + i - 1LL) / i) * i; j < b; j += i) {
				is_prime[j - a] = false;	// [a, b)のふるい
			}
		}
	}
	return is_prime;
}

vector< int64_t > divisor(int64_t n) {
	vector< int64_t > ret;
	for (int64_t i = 1; i * i <= n; i++) {
		if (n % i == 0) {
			ret.push_back(i);
			if (i * i != n) ret.push_back(n / i);
		}
	}
	sort(begin(ret), end(ret));
	return (ret);
}




// 汎用的な二分探索のテンプレ(めぐる式)
int binary_search(function<bool(int)> isOk, int ng, int ok) {

	/* ok と ng のどちらが大きいかわからないことを考慮 */
	while (abs(ok - ng) > 1) {
		int mid = (ok + ng) / 2;

		if (isOk(mid)) ok = mid;
		else ng = mid;
	}
	return ok;
}

std::pair<std::vector<Weight>, bool> bellmanFord(const Graph& g, int s) {
	int n = g.size();
	const Weight inf = std::numeric_limits<Weight>::max() / 8;
	Edges es;
	for (int i = 0; i < n; i++)
		for (auto& e : g[i]) es.emplace_back(e);

	//初期化、スタート地点以外の距離は無限大
	std::vector<Weight> dist(n, inf);
	dist[s] = 0;
	bool negCycle = false;
	for (int i = 0;; i++) {
		bool update = false;
		//すべての辺について、その辺をとおった場合に最短経路が更新できる場合は更新する
		for (auto& e : es) {
			if (dist[e.src] != inf && dist[e.dst] > dist[e.src] + e.weight) {
				dist[e.dst] = dist[e.src] + e.weight;
				update = true;
			}
		}
		//更新がなくなったらおはり
		if (!update) break;
		//n回以上更新されてたら負閉路がある
		if (i > n) {
			negCycle = true;
			break;
		}
	}
	return std::make_pair(dist, !negCycle);
}

//ゴールを指定して、それまでのパスに負閉路がなかったらOK(嘘修正済)
std::pair<std::vector<Weight>, bool> bellmanFord(const Graph& g, int s, int d) {
	int n = g.size();
	const Weight inf = std::numeric_limits<Weight>::max() / 8;
	Edges es;
	for (int i = 0; i < n; i++)
		for (auto& e : g[i]) es.emplace_back(e);

	//初期化、スタート地点以外の距離は無限大
	std::vector<Weight> dist(n, inf);
	dist[s] = 0;
	bool negCycle = false;
	for (int i = 0; i < n * 2; i++) {
		bool update = false;
		//すべての辺について、その辺をとおった場合に最短経路が更新できる場合は更新する
		for (auto& e : es) {
			if (dist[e.src] != inf && dist[e.dst] > dist[e.src] + e.weight) {
				// n回目の更新で d が更新されてたら問答無用で負閉路ありとしてNG
				if (i >= n - 1 && e.dst == d) {
					negCycle = true;
				}
				// 終点以外に負閉路がある場合はそこの距離を十分小さい値に置き換える
				else if (i >= n - 1) {
					dist[e.dst] = -inf;
					update = true;
				}
				else {
					dist[e.dst] = dist[e.src] + e.weight;
					update = true;
				}
			}
		}
		//更新がなくなったらおはり
		if (!update) break;
	}
	return std::make_pair(dist, !negCycle);
}

//R[i] == S[i] を中心とした極大回文長 なるvector Rを返す
vector<int> Manachar(string S) {
	int len = S.length();
	vector<int> R(len);

	int i = 0, j = 0;
	while (i < S.size()) {
		while (i - j >= 0 && i + j < S.size() && S[i - j] == S[i + j]) ++j;
		R[i] = j;
		int k = 1;
		while (i - k >= 0 && i + k < S.size() && k + R[i - k] < j) R[i + k] = R[i - k], ++k;
		i += k; j -= k;
	}
	return R;
}

std::vector<int> tsort(const Graph &g) {
	int n = g.size(), k = 0;
	std::vector<int> ord(n), in(n);
	for (auto &es : g)
		for (auto &e : es) in[e.dst]++;
	std::queue<int> q;
	//入次数0の点をキューに追加
	for (int i = 0; i < n; ++i)
		if (in[i] == 0) q.push(i);
	while (q.size()) {
		int v = q.front();
		//Sから node n を削除する
		q.pop();
		//L に n を追加する
		ord[k++] = v;
		for (auto &e : g[v]) {
			//選択した点から出てる辺を削除、0になったらキューに追加
			if (--in[e.dst] == 0) { 
				q.push(e.dst);
			}
		}

	}
	return *std::max_element(in.begin(), in.end()) == 0 ? ord : std::vector<int>();
}

std::vector<Weight> dijkstra(const Graph &g, int s) {
	const Weight INF = std::numeric_limits<Weight>::max() / 8;
	using state = std::tuple<Weight, int>;
	std::priority_queue<state> q;
	std::vector<Weight> dist(g.size(), INF);
	dist[s] = 0;
	q.emplace(0, s);
	while (q.size()) {
		Weight d;
		int v;
		std::tie(d, v) = q.top();
		q.pop();
		d *= -1;
		/* if(v == t) return d; */
		if (dist[v] < d) continue;
		for (auto &e : g[v]) {
			if (dist[e.dst] > dist[v] + e.weight) {
				dist[e.dst] = dist[v] + e.weight;
				q.emplace(-dist[e.dst], e.dst);
			}
		}
	}
	return dist;
}

Matrix WarshallFloyd(const Graph &g) {
	auto const INF = std::numeric_limits<Weight>::max() / 8;
	int n = g.size();
	Matrix d(n, Array(n, INF));
	rep(i, n) d[i][i] = 0;
	rep(i, n) for (auto &e : g[i]) d[e.src][e.dst] = std::min(d[e.src][e.dst], e.weight);
	rep(k, n) rep(i, n) rep(j, n) {
		if (d[i][k] != INF && d[k][j] != INF) d[i][j] = std::min(d[i][j], d[i][k] + d[k][j]);
	}
	return d;
}

std::pair<std::vector<int>, std::vector<int>> prime_factor_decomp(int n) {
	std::vector<int> p, e;
	int m = n;
	for (int i = 2; i * i <= n; i++) {
		if (m % i != 0) continue;
		int c = 0;
		while (m % i == 0) c++, m /= i;
		p.push_back(i);
		e.push_back(c);
	}
	if (m > 1) {
		p.push_back(m);
		e.push_back(1);
	}
	return std::make_pair(p, e);
}

int extgcd(int a, int b, int &x, int &y) {
	int g = a;
	x = 1;
	y = 0;
	if (b != 0) g = extgcd(b, a % b, y, x), y -= (a / b) * x;
	return g;
}

// 不定方程式 ax + by = c の一般整数解(pt + q, rt + s)を求める
/*
* exist: 解が存在するか否か
* p, q, r, s: 存在するならば不定方程式の一般解(pt + q, rt + s)
* ここで、式変形から、p > 0、 q < 0 となることに注意する。(解の条件を絞るときなどに必要になる)
*/
void IndeterminateEq(int a, int b, int c, bool& exist, int& p, int& q, int& r, int& s) {
	int X, Y;

	int g = euclidean_gcd(a, b);

	// c が最大公約数の整数倍でないならNG
	if (c % g != 0) {
		exist = false;
		return;
	}
	exist = true;

	// 拡張ユークリッドの互除法で ax + by = gcd(a, b) なる (X, Y) を求める
	extgcd(a, b, X, Y);
	int m = c / g;

	// ax + by = c の解にする
	X *= m;
	Y *= m;

	int a2 = a / g;
	int b2 = b / g;

	p = b2;
	q = X;
	r = -a2;
	s = Y;
}

// x^n mod modulo を繰り返し二乗法で計算する 
// n を 2^k の和で表す -> n を二進表記したとき、kbit目(0-indexed)が立っているときだけx^kをかける
int mod_pow(int x, int n, int modulo) {
	int res = 1;
	while (n > 0) {
		if (n & 1) {
			res = res * x % modulo;
		}
		x = x * x % modulo;
		n >>= 1;
	}
	return res;
}

int64_t popcnt(int64_t n)
{
	int64_t c = 0;
	c = (n & 0x5555555555555555) + ((n >> 1) & 0x5555555555555555);
	c = (c & 0x3333333333333333) + ((c >> 2) & 0x3333333333333333);
	c = (c & 0x0f0f0f0f0f0f0f0f) + ((c >> 4) & 0x0f0f0f0f0f0f0f0f);
	c = (c & 0x00ff00ff00ff00ff) + ((c >> 8) & 0x00ff00ff00ff00ff);
	c = (c & 0x0000ffff0000ffff) + ((c >> 16) & 0x0000ffff0000ffff);
	c = (c & 0x00000000ffffffff) + ((c >> 32) & 0x00000000ffffffff);
	return(c);
}

// 2D平面上の変換を表す行列たち
// 90度 反時計回り
const vector<vector<int>> AntiClockWiseMatrix90 = {
	{0, 1, 0},
	{-1, 0, 0},
	{0, 0, 1}
};
// 90度 時計回り
vector<vector<int>> ClockWiseMatrix90 = {
	{0, -1, 0},
	{1, 0, 0},
	{0, 0, 1}
};

// x軸方向に x  y軸方向に y , 平行移動
const auto MoveMat = [](int x, int y) -> vector<vector<int>> {
	return 	vector<vector<int>> {
		{1, 0, 0},
		{0, 1, 0},
		{x, y, 1}
	};
};

// X軸に対称移動 -> y を反転
const vector<vector<int>> ReflectionX = {
		{1, 0, 0},
		{0, -1, 0},
		{0, 0, 1}
};
// Y軸対称 -> x を反転
const vector<vector<int>> ReflectionY = {
		{-1, 0, 0},
		{0, 1, 0},
		{0, 0, 1}
};

// 単位行列
const vector<vector<int>> IdentityMatrix = {
		{1, 0, 0},
		{0, 1, 0},
		{0, 0, 1}
};

/*
行列積と行列累乗
行列積
vector<vector<T>> matrixMultiplies(vector<vector<T>> l, vector<vector<T>> r, F plus = plus<T>(), G multiple = multiplies<T>(), T eplus = 0LL)
行列累乗
vector<vector<T>> matrixPower(vector<vector<T>> m, int n, F plus = std::plus<T>(), G multiple = multiplies<T>(), T eplus = 0LL, T emultiple = 1LL)

普通の行列積(N, +, *) の場合は単に l, r を渡すだけでいけることに注意すること 
T:			考える集合(競プロにおいてはたぶんほぼ整数)
l:			左からかける行列
r:			右からかける行列
plus:		加法演算
multiple:	乗法演算
eplus:		加法の単位元
emultiple:	乗法の単位元
*/
template<typename T = long long, typename F = decltype(std::plus<T>()), typename G = decltype(multiplies<T>())>
vector<vector<T>> matrixMultiplies(vector<vector<T>> l, vector<vector<T>> r, F plus = plus<T>(), G multiple = multiplies<T>(), T eplus = 0LL) {
	int rx = r[0].size();
	int ry = r.size();
	int ly = l.size();
	int lx = l[0].size();

	assert(lx == ry);
	vector<vector<T> > ret;

	for (int y = 0; y < ly; y++) {
		vector<T> add;
		for (int x = 0; x < rx; x++) {
			T cell = eplus;
			for (int i = 0; i < ry; i++) {
				T mul = multiple(l[y][i], r[i][x]);
				cell = plus(cell, mul);
			}
			add.push_back(cell);
		}
		ret.push_back(add);
	}
	return ret;
}

template<typename T = long long, typename F = decltype(std::plus<T>()), typename G = decltype(multiplies<T>())>
vector<vector<T>> matrixPower(vector<vector<T>> m, int n, F plus = std::plus<T>(), G multiple = multiplies<T>(), T eplus = 0LL, T emultiple = 1LL) {
	int k = m.size();
	if (n == 0) {
		vector<vector<T> > E;
		for (int i = 0; i < k; i++) {
			// 単位行列は対角成分を乗法単位元、非対角成分をゼロ元で埋める
			vector<T> v(k, eplus);
			v[i] = emultiple;
			E.push_back(v);
		}
		return E;
	}
	vector<vector<T>> ret = matrixPower(matrixMultiplies(m, m, plus, multiple, eplus), n / 2, plus, multiple, eplus, emultiple);
	if (n % 2 == 1) {
		ret = matrixMultiplies(m, ret, plus, multiple);
	}
	return ret;
}

// フロー系のアルゴリズム
// 最大流
/*
Ford-Fulkerson法(蟻本) O(F|E|)
F: 最大流量
E: 辺数
コンストラクタ引数でノード数nを受け取り初期化し、add_edge で辺と逆辺を追加していく
*/
class Ford_Fulkerson {
private:
	struct Edge {
		int src, dst;

		// libalgo のものに追加、メンバを追加するだけなので互換性は崩さないはず、逆辺のG[e.dstの]インデックスを保持
		int rev;
		int cap;
		Edge(int s, int d, int c, int r) : src(s), dst(d), cap(c), rev(r) {}
	};
	vector<vector<Edge> > G;
	vector<bool> used;
public:
	Ford_Fulkerson(int n) :
		G(n),
		used(n, false)
	{}

	void add_edge(int s, int d, int cap) {
		G[s].emplace_back(s, d, cap, G[d].size());
		G[d].emplace_back(d, s, 0, G[s].size() - 1);
	}

	int dfs(int v, int t, int f) {
		if (v == t) {
			return f;
		}
		used[v] = true;
		for (Edge& e : G[v]) {
			if (!used[e.dst] && e.cap > 0) {
				// 流せる辺があったら流す
				int d = dfs(e.dst, t, min(f, e.cap));
				if (d > 0) {
					// 辺の残り容量を減らす
					e.cap -= d;
					// 逆辺の容量を増やす
					G[e.dst][e.rev].cap += d;
					return d;
				}
			}
		}
		// t にたどり着けなかったら0
		return 0;
	}
	int max_flow(int s, int t) {
		int flow = 0;

		while (1) {
			for (int i = 0; i < used.size(); i++) {
				used[i] = false;
			}
			int f = dfs(s, t, LL_HALFMAX);
			if (f == 0) {
				return flow;
			}
			flow += f;
		}
	}

};

/*
Dinic法 From libalgo O(V^2 * E)
dinic::solve(s, t) : s -> t の最大流を求める
dinic;;flow[u][v] : 辺(u, v)の流量
*/
struct dinic {
	int n, s, t;
	std::vector<int> level, prog, que;
	std::vector<std::vector<Flow>> cap, flow;
	std::vector<std::vector<int>> g;
	Flow inf;
	dinic(const Graph &graph)
		: n(graph.size()),
		cap(n, std::vector<Flow>(n)),
		flow(n, std::vector<Flow>(n)),
		g(n, std::vector<int>()),
		inf(std::numeric_limits<Flow>::max() / 8) {
		for (int i = 0; i < n; i++) {
			for (auto &e : graph[i]) {
				int u = e.src, v = e.dst;
				Flow c = e.cap;
				cap[u][v] += c;
				cap[v][u] += c;
				flow[v][u] += c;
				g[u].push_back(v);
				g[v].push_back(u);
			}
		}
	}
	// 残りを求める
	inline Flow residue(int u, int v) { return cap[u][v] - flow[u][v]; }

	// 実際に最大流問題を解く
	Flow solve(int s_, int t_) {
		this->t = t_, this->s = s_;
		que.resize(n + 1);
		Flow res = 0;
		// levelize() == false: bfs で s から t に到達できなかった
		while (levelize()) {
			prog.assign(n, 0);
			res += augment(s, inf);
		}
		return res;
	}
	// bfs でレベルグラフをつくる
	bool levelize() {
		int l = 0, r = 0;
		level.assign(n, -1);
		level[s] = 0;
		que[r++] = s;
		while (l != r) {
			int v = que[l++];
			if (v == t) break;
			for (const int &d : g[v]) {
				// まだレベルが決まっておらず、v -> dの辺に流せるならlevel[d] = level[v] + 1
				if (level[d] == -1 && residue(v, d) != 0) {
					level[d] = level[v] + 1;
					que[r++] = d;
				}
			}
		}
		// t に到達できるなら true を返す
		return level[t] != -1;
	}
	// dfs で実際に流してみる
	Flow augment(int v, Flow lim) {
		Flow res = 0;
		if (v == t) return lim;
		// prog[v]: dfs において、vを展開する際、vの子の何番目まで展開したかを覚えておく
		for (int &i = prog[v]; i < (int)g[v].size(); i++) {
			const int &d = g[v][i];
			// v -> d に流せない or v(流す側) の方がレベルが大きい(=深い)場合NG
			if (residue(v, d) == 0 || level[v] >= level[d]) continue;
			// 流せるなら、流せるだけ流す
			const Flow aug = augment(d, std::min(lim, residue(v, d)));
			flow[v][d] += aug;
			flow[d][v] -= aug;
			res += aug;
			lim -= aug;
			// ノードvに来ている流量を使い切ったら終わり
			if (lim == 0) break;
		}
		return res;
	}
};

/*
Primal-Dual法(蟻本版 / ベルマンフォード)
*/

class Primal_Dual_BellmanFord {
	using Cost = int;
	struct Edge {
		int src, dst;

		// libalgo のものに追加、メンバを追加するだけなので互換性は崩さないはず、逆辺のG[e.dstの]インデックスを保持
		int rev;
		Cost cost;
		Flow cap;
		Edge(int s, int d, int aRev, Cost aCost, Flow aCap) : src(s), dst(d), rev(aRev), cost(aCost), cap(aCap) {}
	};

	int V;							//頂点数
	vector<vector<Edge>> G;			// 隣接リスト
	vector<int> dist;				// 最短距離
	vector<int> prevv;				// 直前の頂点
	vector<int> preve;				// 直前の辺
	const int INF;

public:
	// 頂点数 n を引数にとって初期化
	Primal_Dual_BellmanFord(int n) :
		V(n),
		G(n),
		dist(n, 0),
		prevv(n, 0),
		preve(n, 0),
		INF(std::numeric_limits<int>::max() / 8) {}
	void add_edge(int src, int dst, int cap, int cost) {
		// cost は weight に入れる
		G[src].emplace_back(src, dst, G[dst].size(), cost, cap);
		G[dst].emplace_back(dst, src, G[src].size() - 1, -cost, 0);
	}

	int min_cost_flow(int s, int t, int f) {
		int res = 0;
		while (f > 0) {
			// ベルマンフォードによりs-t最短路をもとめる
			dist.assign(V, INF);
			dist[s] = 0;
			bool update = true;
			while (update) {
				update = false;
				for (int v = 0; v < V; v++) {
					if (dist[v] == INF) continue;
					for (int i = 0; i < G[v].size(); i++) {
						Edge& e = G[v][i];
						if (e.cap > 0 && dist[e.dst] > dist[v] + e.cost) {
							dist[e.dst] = dist[v] + e.cost;
							prevv[e.dst] = v;
							preve[e.dst] = i;
							update = true;
						}
					}
				}
			}

			// これ以上流せない
			if (dist[t] == INF) {
				return -1;
			}

			// 復元したs-t最短路に沿って流せるだけ流す
			int d = f;
			// 尻からprevvを辿っていき、流せる量を求める
			for (int v = t; v != s; v = prevv[v]) {
				// 一つ手前に戻るための辺
				Edge &e = G[prevv[v]][preve[v]];
				chmin(d, e.cap);
			}

			f -= d;

			// ここでの dist はコスト和なので、それに流す量をかけると今回見つけた最短パスに流すコストとなる。
			res += d * dist[t];
			for (int v = t; v != s; v = prevv[v]) {
				Edge &e = G[prevv[v]][preve[v]];
				e.cap -= d;
				G[v][e.rev].cap += d;
			}
		}
		return res;
	}
};

/*
ダイクストラ版 Primal-Dual
出典: https://ei1333.github.io/luzhiled/snippets/graph/primal-dual.html
*/

template< typename flow_t, typename cost_t >
struct PrimalDual {
	const cost_t INF;

	struct edge {
		int to;
		flow_t cap;
		cost_t cost;
		int rev;
		bool isrev;
		edge(int aTo, flow_t aCap, cost_t aCost, int aRev, bool aIsRev) : to(aTo), cap(aCap), cost(aCost), rev(aRev), isrev(aIsRev) {}
	};
	vector< vector< edge > > graph;
	vector< cost_t > potential, min_cost;
	vector< int > prevv, preve;

	PrimalDual(int V) : graph(V), INF(numeric_limits< cost_t >::max()) {}

	void add_edge(int from, int to, flow_t cap, cost_t cost) {
		graph[from].emplace_back(to, cap, cost, (int)graph[to].size(), false);
		graph[to].emplace_back(from, 0, -cost, (int)graph[from].size() - 1, true);
	}

	cost_t min_cost_flow(int s, int t, flow_t f) {
		int V = (int)graph.size();
		cost_t ret = 0;
		using Pi = pair< cost_t, int >;
		priority_queue< Pi, vector< Pi >, greater< Pi > > que;
		potential.assign(V, 0);
		preve.assign(V, -1);
		prevv.assign(V, -1);

		while (f > 0) {
			min_cost.assign(V, INF);
			que.emplace(0, s);
			min_cost[s] = 0;
			while (!que.empty()) {
				Pi p = que.top();
				que.pop();
				if (min_cost[p.second] < p.first) continue;
				for (int i = 0; i < graph[p.second].size(); i++) {
					edge &e = graph[p.second][i];
					cost_t nextCost = min_cost[p.second] + e.cost + potential[p.second] - potential[e.to];
					if (e.cap > 0 && min_cost[e.to] > nextCost) {
						min_cost[e.to] = nextCost;
						prevv[e.to] = p.second, preve[e.to] = i;
						que.emplace(min_cost[e.to], e.to);
					}
				}
			}
			if (min_cost[t] == INF) return -1;
			for (int v = 0; v < V; v++) potential[v] += min_cost[v];
			flow_t addflow = f;
			for (int v = t; v != s; v = prevv[v]) {
				addflow = min(addflow, graph[prevv[v]][preve[v]].cap);
			}
			f -= addflow;
			ret += addflow * potential[t];
			for (int v = t; v != s; v = prevv[v]) {
				edge &e = graph[prevv[v]][preve[v]];
				e.cap -= addflow;
				graph[v][e.rev].cap += addflow;
			}
		}
		return ret;
	}

	void output() {
		for (int i = 0; i < graph.size(); i++) {
			for (auto &e : graph[i]) {
				if (e.isrev) continue;
				auto &rev_e = graph[e.to][e.rev];
				cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << rev_e.cap + e.cap << ")" << endl;
			}
		}
	}
};

class lca {
public:
	int n, segn;
	vector<int> path;		// 蟻本の vs、オイラーツアーを保持
	vector<int> depth;		// 蟻本の depth、path[i] であるノードの深さを保持
	vector<int> in_order;	// 蟻本の id、ノードiがオイラーツアーで最初に出てくるインデックスを保持
	vector<pair<int, int>> dat;
	const std::pair<int, int> INF = std::make_pair(1000000000, 1000000000);

	lca(const Graph& g, int root) : n(g.size()), path(n * 2 - 1), depth(n * 2 - 1), in_order(n) {
		int k = 0;
		dfs(g, root, -1, 0, k);

		// セグ木を構築、持つのはpair(depth, index) => depth が最小となる index がわかる 
		for (segn = 1; segn < n * 2 - 1; segn <<= 1);

		dat.assign(segn * 2, INF);
		for (int i = 0; i < (int)depth.size(); ++i) dat[segn + i] = std::make_pair(depth[i], i);
		for (int i = segn - 1; i >= 1; --i) dat[i] = min(dat[i * 2], dat[i * 2 + 1]);
	}

	int get(int u, int v) const {
		int l = std::min(in_order[u], in_order[v]);
		int r = std::max(in_order[u], in_order[v]) + 1;
		return path[range_min(1, segn, l, r).second];
	}

	void dfs(const Graph& g, int v, int p, int d, int& k) {
		// k: オイラーツアーの何番目かを保持する変数
		in_order[v] = k;
		path[k] = v;
		depth[k++] = d;
		for (auto &e : g[v]) {
			if (e.dst != p) {
				dfs(g, e.dst, v, d + 1, k);
				// ここに来た時はノードvの子であるe.dstを展開し終わってvに戻ってきたときなので、再度 path と depth に記録する
				path[k] = v;
				depth[k++] = d;
			}
		}
	}

	// v : いまみてるノード、w: 今見てるノードに対応する区間長 l: ? r: ?
	pair<int, int> range_min(int v, int w, int l, int r) const {
		if (r <= l || w == 0) return INF;
		if (r - l == w)
			return dat[v];

		int m = w / 2;
		auto rmin = range_min(v * 2, m, l, std::min(r, m));
		auto lmin = range_min(v * 2 + 1, m, std::max(0LL, l - m), r - m);

		return min(rmin, lmin);
	}
};

// int における ceil と floor、負数対応(a / b の ceil, floor)
int64_t intceil(int64_t a, int64_t b) {
	int sign_a = (a > 0) - (a < 0);
	int sign_b = (b > 0) - (b < 0);

	if (sign_a == sign_b) {
		return (a + b - sign_b) / b;
	}
	else {
		return a / b;
	}
}
int64_t intfloor(int64_t a, int64_t b) {
	int sign_a = (a > 0) - (a < 0);
	int sign_b = (b > 0) - (b < 0);

	if (sign_a == sign_b) {
		return a / b;
	}
	else {
		return (a - b + sign_b) / b;
	}
}

class Point {
public:
	int y, x;
	Point() { y = x = 0; }
	Point(int y0, int x0) {
		y = y0;
		x = x0;
	}
	Point operator+(const Point& p) const { return Point(y + p.y, x + p.x); }
	Point operator-(const Point& p) const { return Point(y - p.y, x - p.x); }
	Point operator*(int a) const { return Point(y * a, x * a); }
	long long length2() const { return y * (long long)y + x * (long long)x; }
	long long dist2(const Point& p) const {
		return (y - p.y) * (long long)(y - p.y) + (x - p.x) * (long long)(x - p.x);
	}
	long long dot(const Point& p) const {
		return y * (long long)p.y + x * (long long)p.x;  // |a|*|b|*cosθ
	}
	long long cross(const Point& p) const {
		return x * (long long)p.y - y * (long long)p.x;  // |a|*|b|*sinθ
	}

	static bool Sorter(const Point& p1, const Point& p2) {
		bool a = p1.y > 0 || (p1.y == 0 && p1.x >= 0);
		bool b = p2.y > 0 || (p2.y == 0 && p2.x >= 0);
		if (a != b) return a;
		long long c = p2.x * (long long)p1.y;
		long long d = p1.x * (long long)p2.y;
		if (c != d) return c < d;
		return p1.length2() < p2.length2();
	}
};

// ランレングス圧縮
template<typename T>
vector<pair<T, int>> RunLength(vector<T> arr) {
	T now = arr[0];
	int len = arr.size();

	vector<pair<T, int>> res;
	int cnt = 0;
	rep(i, len) {
		if (arr[i] != now) {
			res.emplace_back(now, cnt);
			now = arr[i];
			cnt = 0;
		}
		cnt++;
	}

	res.push_back(mp(now, cnt));
	return res;
}

// ref: https://ei1333.github.io/luzhiled/snippets/memo/doubling.html
// 区間 op 機能追加、と MSVC で動くように clz を不要にした
// コンストラクタ -> SetNext -> Build -> Query の順に呼ぶこと
class Doubling
{
private:
	int m_LogMax;
	vector<vector<int>> m_Next;
	// 区間 op 計算時に必要(例: 区間和)
	std::function<int(int, int)> m_Op;
	// op の単位元
	int m_E;
	// TODO: std::optional 使う(ジャッジが C++17 対応するまで使えないので優先度低)
	const bool m_HasOp;

	// m_RangeOp[k][i] := [i, i+2^k) の区間 op
	vector<vector<int>> m_RangeOp;

public:
	/**
	* @fn
	* @brief op を渡さず、要素数 N, 最大クエリ queryMax の Doubling クラスを構築します。 op を渡さないため、区間 op の取得には対応しません。
	* @param N 要素数です。
	* @param queryMax クエリとして与えられうる最大値です。
	*/
	Doubling(int N, int queryMax) 
		: m_HasOp(false)
	{
		m_LogMax = 1;
		while ((1LL << m_LogMax) < queryMax) {
			m_LogMax++;
		}

		// m_LogMax * N のテーブルを用意
		m_Next.assign(m_LogMax, vector<int>(N, -1));
	}

	/**
	* @fn
	* @brief op を渡して、要素数 N, 最大クエリ queryMax の Doubling クラスを構築します。渡した op を使って区間 op を計算できます。
	* @param N 要素数です。
	* @param queryMax クエリとして与えられうる最大値です。
	* @param op 区間に適用したい演算です。(例: 区間和 なら +)
	* @param e op の単位元です。(例: 区間和 なら0)
	*/
	Doubling(int N, int queryMax, function<int(int, int)> op, int e)
		: m_Op(op)
		, m_E(e)
		, m_HasOp(true)
	{
		m_LogMax = 1;
		while ((1LL << m_LogMax) < queryMax) {
			m_LogMax++;
		}

		// m_LogMax * N のテーブルを用意
		m_Next.assign(m_LogMax, vector<int>(N, -1));
		m_RangeOp.assign(m_LogMax, vector<int>(N, 0));
	}

	/**
	* @fn
	* @brief k の 1 個次の値をセットします。
	* @param k 遷移元
	* @param x 遷移先
	*/
	void SetNext(int k, int x) {
		m_Next[0][k] = x;
	}

	/**
	* @fn
	* @brief Doubling の テーブルを構築します。
	* @pre 問題で与えられるすべての距離1の遷移について、SetNext 済 
	*/
	void Build() {
		// k + 1 を更新するので k + 1 < m_LogMax でループすることに注意する
		for (int k = 0; k + 1 < m_LogMax; k++) {
			for (int i = 0; i < m_Next[k].size(); i++) {
				// i に 2^k 個次がなければ、2^(k+1)個次もない
				if (m_Next[k][i] == -1) {
					m_Next[k + 1][i] = -1;
				}
				else {
					// i の 2^(k+1) 個次は i の 2^k 個次の 2^k 個次
					m_Next[k + 1][i] = m_Next[k][m_Next[k][i]];
				}
			}
		}

		// 区間 op を計算するための op が与えられていたらそのテーブルも計算する
		if (m_HasOp) {
			// TORIAEZU: [i, i+1) の区間 op は i
			for (int i = 0; i < m_RangeOp[0].size(); i++) {
				m_RangeOp[0][i] = i;
			}
			for (int k = 0; k + 1 < m_LogMax; k++) {
				for (int i = 0; i < m_Next[k].size(); i++) {
					// 区間 op なので、はみ出してたら何かがおかしいかも(丸めることはしない)
					// TODO: verify できる問題があったらいい感じにする
					assert(m_Next[k][i] != -1);
					m_RangeOp[k + 1][i] = m_Op(m_RangeOp[k][i], m_RangeOp[k][m_Next[k][i]]);
				}
			}
		}
	}

	/**
	* @fn
	* @brief k の t 個次の値を取得します。
	* @param k 初期値
	* @param t 遷移回数
	*/
	int Query(int k, int t) {
		for (int i = m_LogMax - 1; i >= 0; i--) {
			if ((t >> i) & 1LL) {
				k = m_Next[i][k];
			}
		}
		return k;
	}

	/**
	* @fn
	* @brief k から t 回遷移した時の列を A_0, A_1..., A_tとしたとき、{op(A_i), i = [0, t)} の区間 op を求めます。
	* @param k 遷移元
	* @param t 遷移回数
	* @detail op = plus<int>, e = 0 の時しか verify されてないので注意
	*/
	int QueryRangeOp(int k, int t) {
		assert(m_HasOp);

		int ans = m_E;
		
		for (int i = m_LogMax - 1; i >= 0; i--) {
			if ((t >> i) & 1LL) {
				ans = m_Op(ans, m_RangeOp[i][k]);
				k = m_Next[i][k];
			}
		}
		return ans;
	}
};

// 蟻本版Vector2D
class Vector2D {
private:
	double EPS = 1e-10;
	// 誤差を考慮して加算
	double add(double a, double b) {
		if (abs(a + b) < EPS * (abs(a) + abs(b))) {
			return 0;
		}
		return a + b;
	}
public:
	double x, y;
	Vector2D()
		: x(0.0)
		, y(0.0)
	{}
	Vector2D(double x, double y)
		: x(x)
		, y(y)
	{}
	Vector2D operator+(Vector2D p) {
		return Vector2D(add(x, p.x), add(y, p.y));
	}
	Vector2D operator-(Vector2D p) {
		return Vector2D(add(x, -p.x), add(y, -p.y));
	}
	Vector2D operator*(double d) {
		return Vector2D(x * d, y * d);
	}
	Vector2D operator/(double d) {
		return Vector2D(x / d, y / d);
	}

	// 内積 this dot p
	double dot(Vector2D p) {
		return add(x * p.x, y * p.y);
	}
	// 外積 this cross p
	// 二次元ベクトルの外積は z 成分しか持たないので double であつかう
	double cross(Vector2D p) {
		return add(x * p.y, -y * p.x);
	}

	// ベクトルの長さの二乗
	double SquareLength() {
		return x * x + y * y;
	}

	// ベクトルの長さ
	double Length() {
		return sqrtl(x * x + y * y);
	}

	// ベクトルの回転(原点中心、反時計回りが正)
	Vector2D Rotate(double rad) {
		Vector2D ret;
		ret.x = x * cosl(rad) - y * sinl(rad);
		ret.y = x * sinl(rad) + y * cosl(rad);

		return ret;
	}

	// 線分p1-p2上に点qがあるか判定
	static bool on_seg(Vector2D p1, Vector2D p2, Vector2D q) {
		return (p1 - q).cross(p2 - q) == 0 && (p1 - q).dot(p2 - q) <= 0;
	}

	// 直線 p1-p2 と 直線 q1-q2 の交点
	static Vector2D intersection(Vector2D p1, Vector2D p2, Vector2D q1, Vector2D q2) {
		return p1 + (p2 - p1) * ((q2 - q1).cross(q1 - p1) / (q2 - q1).cross(p2 - p1));
	}

	// 線分 pq と 線分 rs が交差するか判定
	static bool is_intersect(Vector2D p, Vector2D q, Vector2D r, Vector2D s) {
		Vector2D pq = q - p;
		Vector2D rs = s - r;

		// pq と rs が平行
		if (pq.cross(rs) == 0) {
			// もう一方の線分の端点が載っていたら交差
			return on_seg(p, q, r) || on_seg(p, q, s) || on_seg(r, s, p) || on_seg(r, s, q);
		}
		// 平行でない
		else {
			// 直線の交点
			Vector2D i = intersection(p, q, r, s);
			// 交点が線分の両方に載っていればOK
			return on_seg(p, q, i) && on_seg(r, s, i);
		}
	}
};

// 蟻本版凸包(P234)
vector<Vector2D> ConvexHull(vector<Vector2D> ps) {
	int n = ps.size();
	// 辞書順比較関数
	auto cmp_x = [](const Vector2D& p, const Vector2D& q) {
		if (p.x != q.x) {
			return p.x < q.x;
		}
		return p.y < q.y;
	};

	sort(ps.begin(), ps.end(), cmp_x);

	int k = 0;					// 凸包の頂点数
	vector<Vector2D> qs(n * 2);	// 構築中の凸包

								// 下側
	for (int i = 0; i < n; i++) {
		// 外積が負 -> 引数側ベクトルが時計回りの方向にある -> 凹んでいるので直前の頂点を除く
		while (k > 1 && (qs[k - 1] - qs[k - 2]).cross(ps[i] - qs[k - 1]) <= 0) {
			k--;
		}
		qs[k++] = ps[i];
	}

	// 上側
	for (int i = n - 2, t = k; i >= 0; i--) {
		while (k > t && (qs[k - 1] - qs[k - 2]).cross(ps[i] - qs[k - 1]) <= 0) {
			k--;
		}
		qs[k++] = ps[i];
	}

	qs.resize(k - 1);
	return qs;
}

struct SuccinctIndexableDictionary {
	size_t length;
	size_t blocks;
	vector< unsigned > bit, sum;

	SuccinctIndexableDictionary() = default;

	SuccinctIndexableDictionary(size_t length) : length(length), blocks((length + 31) >> 5) {
		bit.assign(blocks, 0U);
		sum.assign(blocks, 0U);
	}

	void set(int k) {
		bit[k >> 5] |= 1U << (k & 31);
	}

	void build() {
		sum[0] = 0U;
		for (int i = 1; i < blocks; i++) {
			sum[i] = sum[i - 1] + popcnt(bit[i - 1]);
		}
	}

	bool operator[](int k) {
		return (bool((bit[k >> 5] >> (k & 31)) & 1));
	}

	int rank(int k) {
		return (sum[k >> 5] + popcnt(bit[k >> 5] & ((1U << (k & 31)) - 1)));
	}

	int rank(bool val, int k) {
		return (val ? rank(k) : k - rank(k));
	}
};

/*
 * 出典: https://ei1333.github.io/library/structure/wavelet/wavelet-matrix.cpp.html
 * @brief Wavelet-Matrix(ウェーブレット行列)
 * @docs docs/wavelet-matrix.md
 */
template< typename T, int MAXLOG >
struct WaveletMatrix {
	size_t length;
	SuccinctIndexableDictionary matrix[MAXLOG];
	int mid[MAXLOG];

	WaveletMatrix() = default;

	WaveletMatrix(vector< T > v) : length(v.size()) {
		vector< T > l(length), r(length);
		for (int level = MAXLOG - 1; level >= 0; level--) {
			matrix[level] = SuccinctIndexableDictionary(length + 1);
			int left = 0, right = 0;
			for (int i = 0; i < length; i++) {
				if (((v[i] >> level) & 1)) {
					matrix[level].set(i);
					r[right++] = v[i];
				}
				else {
					l[left++] = v[i];
				}
			}
			mid[level] = left;
			matrix[level].build();
			v.swap(l);
			for (int i = 0; i < right; i++) {
				v[left + i] = r[i];
			}
		}
	}

	pair< int, int > succ(bool f, int l, int r, int level) {
		return { matrix[level].rank(f, l) + mid[level] * f, matrix[level].rank(f, r) + mid[level] * f };
	}

	// v[k]
	T access(int k) {
		T ret = 0;
		for (int level = MAXLOG - 1; level >= 0; level--) {
			bool f = matrix[level][k];
			if (f) ret |= T(1) << level;
			k = matrix[level].rank(f, k) + mid[level] * f;
		}
		return ret;
	}

	T operator[](const int &k) {
		return access(k);
	}

	// count i s.t. (0 <= i < r) && v[i] == x
	int rank(const T &x, int r) {
		int l = 0;
		for (int level = MAXLOG - 1; level >= 0; level--) {
			tie(l, r) = succ((x >> level) & 1, l, r, level);
		}
		return r - l;
	}

	// k-th(0-indexed) smallest number in v[l,r)
	T kth_smallest(int l, int r, int k) {
		assert(0 <= k && k < r - l);
		T ret = 0;
		for (int level = MAXLOG - 1; level >= 0; level--) {
			int cnt = matrix[level].rank(false, r) - matrix[level].rank(false, l);
			bool f = cnt <= k;
			if (f) {
				ret |= T(1) << level;
				k -= cnt;
			}
			tie(l, r) = succ(f, l, r, level);
		}
		return ret;
	}

	// k-th(0-indexed) largest number in v[l,r)
	T kth_largest(int l, int r, int k) {
		return kth_smallest(l, r, r - l - k - 1);
	}

	// count i s.t. (l <= i < r) && (v[i] < upper)
	int range_freq(int l, int r, T upper) {
		int ret = 0;
		for (int level = MAXLOG - 1; level >= 0; level--) {
			bool f = ((upper >> level) & 1);
			if (f) ret += matrix[level].rank(false, r) - matrix[level].rank(false, l);
			tie(l, r) = succ(f, l, r, level);
		}
		return ret;
	}

	// count i s.t. (l <= i < r) && (lower <= v[i] < upper)
	int range_freq(int l, int r, T lower, T upper) {
		return range_freq(l, r, upper) - range_freq(l, r, lower);
	}

	// max v[i] s.t. (l <= i < r) && (v[i] < upper)
	T prev_value(int l, int r, T upper) {
		int cnt = range_freq(l, r, upper);
		return cnt == 0 ? T(-1) : kth_smallest(l, r, cnt - 1);
	}

	// min v[i] s.t. (l <= i < r) && (lower <= v[i])
	T next_value(int l, int r, T lower) {
		int cnt = range_freq(l, r, lower);
		return cnt == r - l ? T(-1) : kth_smallest(l, r, cnt);
	}
};

/*
ウェーブレット行列
出典: https://ei1333.github.io/library/structure/wavelet/wavelet-matrix.cpp.html
*/
template< typename T, int MAXLOG >
struct CompressedWaveletMatrix {
	WaveletMatrix< int, MAXLOG > mat;
	vector< T > ys;

	CompressedWaveletMatrix(const vector< T > &v) : ys(v) {
		sort(begin(ys), end(ys));
		ys.erase(unique(begin(ys), end(ys)), end(ys));
		vector< int > t(v.size());
		for (int i = 0; i < v.size(); i++) t[i] = get(v[i]);
		mat = WaveletMatrix< int, MAXLOG >(t);
	}

	inline int get(const T& x) {
		return lower_bound(begin(ys), end(ys), x) - begin(ys);
	}

	T access(int k) {
		return ys[mat.access(k)];
	}

	T operator[](const int &k) {
		return access(k);
	}

	int rank(const T &x, int r) {
		auto pos = get(x);
		if (pos == ys.size() || ys[pos] != x) return 0;
		return mat.rank(pos, r);
	}

	T kth_smallest(int l, int r, int k) {
		return ys[mat.kth_smallest(l, r, k)];
	}

	T kth_largest(int l, int r, int k) {
		return ys[mat.kth_largest(l, r, k)];
	}

	int range_freq(int l, int r, T upper) {
		return mat.range_freq(l, r, get(upper));
	}

	int range_freq(int l, int r, T lower, T upper) {
		return mat.range_freq(l, r, get(lower), get(upper));
	}

	T prev_value(int l, int r, T upper) {
		auto ret = mat.prev_value(l, r, get(upper));
		return ret == -1 ? T(-1) : ys[ret];
	}

	T next_value(int l, int r, T lower) {
		auto ret = mat.next_value(l, r, get(lower));
		return ret == -1 ? T(-1) : ys[ret];
	}
};

// 区間[l1, r1), [l2, r2)の交差部分を取得、{交差してるかフラグ, {l, r}} が戻り値で、[l, r) が交差してる区間
pair<bool, pair<int, int>> RangeIntersection(int l1, int r1, int l2, int r2) {
	int r = min(r1, r2);
	int l = max(l1, l2);

	if (r - l <= 0) {
		return{ false, {-1, -1} };
	}
	else {
		return { true, {l, r} };
	}
}

// ACL に依存するヘルパー関数
#ifdef ACL_ENABLED
template<typename T>
shared_ptr<atcoder::fenwick_tree<T>> create_fenwick(vector<T> const& v) {
	int vlen = v.size();
	shared_ptr<atcoder::fenwick_tree<T>> ret = make_shared<atcoder::fenwick_tree<T>>(vlen);

	rep(i, vlen) {
		ret->add(i, v[i]);
	}

	return ret;
}
#endif // ACL_ENABLED

// Boost に依存するライブラリ達
#ifdef BOOST_ENABLED
// ベクトル u, v のなす角(rad)
double GetAngle(const Vector3D& u, const Vector3D& v)
{
	double mag = qvm::mag(u);
	double costheta = qvm::dot(u, v) / (qvm::mag(u) * qvm::mag(v));

	double ret = acosl(costheta);
	return ret;
};

// 反時計回りに rad 回転する回転行列、引数に軸を与えないとz軸周り(≒2Dベクトルとして)回転
Matrix3x3 GetRotateMatrix(double rad, Vector3D axis = Vector3D{0, 0, 1}) {
	auto const rotQuat = qvm::rot_quat(axis, rad);
	// クォータニオン -> 回転行列
	auto const mat = qvm::convert_to<Matrix3x3>(rotQuat);
	return mat;
}

// アクセサーマクロ
#define VECTOR3D_X(v) qvm::X(v)
#define VECTOR3D_Y(v) qvm::Y(v)
#define VECTOR3D_Z(v) qvm::Z(v)

#endif

// 弧度法と度数法の相互変換
double Rad2Deg(double rad) {
	return 180.0L / PI * rad;
}

double Deg2Rad(double deg) {
	return deg * PI / 180.0L;
}


void solve(ostringstream& aout, long long N, std::vector<long long> A);
void solve_TLE(ostringstream& aout, long long N, std::vector<long long> A);

class StressTest {
private:
	mt19937 m_RandEngine;
	bool judge_case(long long N, std::vector<long long> A) {
		ostringstream fast, tle;
		solve(fast, N, std::move(A));
		solve_TLE(tle, N, std::move(A));
		if (fast.str() == tle.str()) {
			return true;
		}
		else {
			return false;
		}
	}
	// [l, l+1, ... r] の数列を生成し、シャッフルする
	vector<int> create_range_permutation(int l, int r) {
		vector<int> ret;
		for (int i = l; i <= r; i++) {
			ret.push_back(i);
		}
		shuffle(ret.begin(), ret.end(), m_RandEngine);
		return ret;
	}
	// [1, n] の順列を生成する
	vector<int> create_permutation(int n) {
		create_range_permutation(1, n);
	}
	// 範囲が[l, r] でサイズが n の数列を生成する
	vector<int> create_random_sequence(int l, int r, int n) {
		uniform_int_distribution<> randLR(l, r);
		vector<int> ret;
		for (int i = 0; i < n; i++) {
			ret.push_back(randLR(m_RandEngine));
		}
		return ret;
	}

	/*
	* 頂点数 n, 辺数 m で自己ループと多重辺のない無向グラフを生成
	* 慣習的に頂点番号が1-indexed な AtCoder で 1-n の頂点が使えるようにするため n+1 頂点のグラフを生成し、0番を無視することとする
	* weighted を true にすると重み付き、maxWeight で最大重みを指定
	* 連結でないグラフが出力される可能性があることに注意する
	*/
	Graph create_undirected_graph(int n, int m, bool weighted = false, int maxWeight = 10) {
		Graph ret(n + 1);
		set<pair<int, int>> used;
		uniform_int_distribution<> randNode(1, n);
		uniform_int_distribution<> randWeight(1, maxWeight);
		while (used.size() < m * 2) {
			int src = randNode(m_RandEngine);
			int dst = randNode(m_RandEngine);

			// 自己ループ、多重辺判定
			if (used.count(make_pair(src, dst)) == 0 && used.count(make_pair(dst, src)) == 0 && src != dst) {
				used.insert(make_pair(src, dst));
				used.insert(make_pair(dst, src));
				add_edge(ret, src, dst, weighted ? randWeight(m_RandEngine) : 1);
			}
		}
		return ret;
	}

	/*
	* 頂点数 n, 辺数 m で自己ループと多重辺のない有向グラフを生成
	* 慣習的に頂点番号が1-indexed な AtCoder で 1-n の頂点が使えるようにするため n+1 頂点のグラフを生成し、0番を無視することとする
	* weighted を true にすると重み付き、maxWeight で最大重みを指定
	* 連結でないグラフが出力される可能性があることに注意する
	*/
	Graph create_directed_graph(int n, int m, bool weighted = false, int maxWeight = 10) {
		Graph ret(n + 1);
		set<pair<int, int>> used;
		uniform_int_distribution<> randNode(1, n);
		uniform_int_distribution<> randWeight(1, maxWeight);
		while (used.size() < m) {
			int src = randNode(m_RandEngine);
			int dst = randNode(m_RandEngine);

			// 自己ループ、多重辺判定
			if (used.count(make_pair(src, dst)) == 0 && src != dst) {
				used.insert(make_pair(src, dst));
				add_arc(ret, src, dst, weighted ? randWeight(m_RandEngine) : 1);
			}
		}
		return ret;
	}

	/*
	* 頂点数nの木(無向)を生成します。
	*/
	Graph create_tree(int n, bool weighted = false, int maxWeight = 10) {
		Graph ret(n + 1);
		uf_tree uf(n + 1);
		int cnt = 0;

		uniform_int_distribution<> randNode(1, n);
		uniform_int_distribution<> randWeight(1, maxWeight);

		while (cnt < n - 1) {
			int n1 = randNode(m_RandEngine);
			int n2 = randNode(m_RandEngine);
			if (n1 != n2 && !uf.is_same(n1, n2)) {
				cnt++;
				add_edge(ret, n1, n2, weighted ? randWeight(m_RandEngine) : 1);
			}
		}
	}
public:
	StressTest(int seed) :
		m_RandEngine(seed) {}
	void test() {
		while (1) {
			// TODO: generate random case
			//if (!judge_case(N, std::move(A))) {
				// TODO: output case
				//break;
			//}
		}
	}
};

void solve(ostringstream& aout, long long N, std::vector<long long> A){
	int ans = 0;
	
	rep(l, N) {
		int mini = A[l];
		REP(r, l, N) {
			int len = r - l + 1;
			chmin(mini, A[r]);

			chmax(ans, mini * len);
		}
	}

	cout << ans << "\n";
}

void solve_TLE(ostringstream& aout, long long N, std::vector<long long> A) {

}

signed main() {
	int N;
	cin >> N;

	int sq = N * N;

	set<int> s;
	REPS(y, N) {
		s.insert(y*y);
	}

	int ans = 0;

	REPS(x, N) {
		int rest = sq - x * x;

		if (s.find(rest) != s.end()) {
			ans++;
		}
	}

	cout << ans << "\n";

	return 0;
}
0