結果
| 問題 |
No.1595 The Final Digit
|
| コンテスト | |
| ユーザー |
👑 Kazun
|
| 提出日時 | 2021-07-09 21:30:16 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 52 ms / 2,000 ms |
| コード長 | 7,743 bytes |
| コンパイル時間 | 163 ms |
| コンパイル使用メモリ | 82,304 KB |
| 実行使用メモリ | 61,568 KB |
| 最終ジャッジ日時 | 2024-07-01 15:16:31 |
| 合計ジャッジ時間 | 1,860 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 17 |
ソースコード
class Modulo_Matrix_Error(Exception):
pass
class Modulo_Matrix():
#入力
def __init__(self,M,Mod):
self.ele=[[x%Mod for x in X] for X in M]
self.Mod=Mod
R=len(M)
if R!=0:
C=len(M[0])
else:
C=0
self.row=R
self.col=C
self.size=(R,C)
#出力
def __str__(self):
T=""
(r,c)=self.size
for i in range(r):
U="["
for j in range(c):
U+=str(self.ele[i][j])+" "
T+=U[:-1]+"]\n"
return "["+T[:-1]+"]"
def __repr__(self):
return str(self)
#+,-
def __pos__(self):
return self
def __neg__(self):
return self.__scale__(-1)
#加法
def __add__(self,other):
A=self
B=other
if A.size!=B.size:
raise Modulo_Matrix_Error("2つの行列のサイズが異なります.({},{})".format(A.size,B.size))
M=A.ele
N=B.ele
L=[0]*self.row
for i in range(A.row):
E,F=M[i],N[i]
L[i]=[(E[j]+F[j])%self.Mod for j in range(self.col)]
return Modulo_Matrix(L,self.Mod)
#減法
def __sub__(self,other):
return self+(-other)
#乗法
def __mul__(self,other):
A=self
B=other
if isinstance(B,Modulo_Matrix):
if A.col!=B.row:
raise Modulo_Matrix_Error("左側の列と右側の行が一致しません.({},{})".format(A.size,B.size))
M=A.ele
N=B.ele
E=[[0]*other.col for _ in range(self.row)]
for i,e in enumerate(E):
for k,m in enumerate(M[i]):
for j,n in enumerate(N[k]):
e[j]+=m*n
e[j]%=self.Mod
return Modulo_Matrix(E,self.Mod)
elif isinstance(B,int):
return A.__scale__(B)
def __rmul__(self,other):
if isinstance(other,int):
return self*other
def Inverse(self):
M=self
if M.row!=M.col:
raise Modulo_Matrix_Error("正方行列ではありません.")
R=M.row
I=[[1*(i==j) for j in range(R)] for i in range(R)]
G=M.Column_Union(Modulo_Matrix(I,self.Mod))
G=G.Row_Reduce()
A,B=[None]*R,[None]*R
for i in range(R):
A[i]=G.ele[i][:R]
B[i]=G.ele[i][R:]
if A==I:
return Modulo_Matrix(B,self.Mod)
else:
raise Modulo_Matrix_Error("正則ではありません.")
#スカラー倍
def __scale__(self,r):
M=self.ele
L=[[(r*M[i][j])%self.Mod for j in range(self.col)] for i in range(self.row)]
return Modulo_Matrix(L,self.Mod)
def __pow__(self,n):
if self.row!=self.col:
raise Modulo_Matrix_Error("正方行列ではありません.")
def __mat_mul(A,B):
E=[[0]*r for _ in range(r)]
for i,e in enumerate(E):
for k,m in enumerate(A[i]):
for j,n in enumerate(B[k]):
e[j]+=m*n
e[j]%=Mod
return E
def __mat_pow(A,k):
if k==0:
return [[1 if i==j else 0 for j in range(r)] for i in range(r)]
else:
return __mat_mul(__mat_pow(A,k-1),A) if k&1 else __mat_pow(__mat_mul(A,A),k>>1)
r=len(self.ele)
Mod=self.Mod
if n>=0:
return Modulo_Matrix(__mat_pow(self.ele,n),Mod)
else:
return Modulo_Matrix(__mat_pow(self.ele,-n),Mod).Inverse()
#等号
def __eq__(self,other):
return self.ele==other.ele
#不等号
def __neq__(self,other):
return not(self==other)
#転置
def Transpose(self):
self.col,self.row=self.row,self.col
self.ele=list(map(list,zip(*self.ele)))
#行基本変形
def Row_Reduce(self):
M=self
(R,C)=M.size
T=[]
for i in range(R):
U=[]
for j in range(C):
U.append(M.ele[i][j])
T.append(U)
I=0
for J in range(C):
if T[I][J]==0:
for i in range(I+1,R):
if T[i][J]!=0:
T[i],T[I]=T[I],T[i]
break
if T[I][J]!=0:
u=T[I][J]
u_inv=pow(u,self.Mod-2,self.Mod)
for j in range(C):
T[I][j]*=u_inv
T[I][j]%=self.Mod
for i in range(R):
if i!=I:
v=T[i][J]
for j in range(C):
T[i][j]-=v*T[I][j]
T[i][j]%=self.Mod
I+=1
if I==R:
break
return Modulo_Matrix(T,self.Mod)
#列基本変形
def Column_Reduce(self):
M=self
(R,C)=M.size
T=[]
for i in range(R):
U=[]
for j in range(C):
U.append(M.ele[i][j])
T.append(U)
J=0
for I in range(R):
if T[I][J]==0:
for j in range(J+1,C):
if T[I][j]!=0:
for k in range(R):
T[k][j],T[k][J]=T[k][J],T[k][j]
break
if T[I][J]!=0:
u=T[I][J]
u_inv=pow(u,self.Mod-2,self.Mod)
for i in range(R):
T[i][J]*=u_inv
T[i][J]%=self.Mod
for j in range(C):
if j!=J:
v=T[I][j]
for i in range(R):
T[i][j]-=v*T[i][J]
T[i][j]%=self.Mod
J+=1
if J==C:
break
return Modulo_Matrix(T,self.Mod)
#行列の階数
def Rank(self):
M=self.Row_Reduce()
(R,C)=M.size
T=M.ele
S=0
for i in range(R):
f=False
for j in range(C):
if T[i][j]!=0:
f=True
break
if f:
S+=1
else:
break
return S
#行の結合
def Row_Union(self,other):
return Modulo_Matrix(self.ele+other.ele,self.Mod)
#列の結合
def Column_Union(self,other):
E=[]
for i in range(self.row):
E.append(self.ele[i]+other.ele[i])
return Modulo_Matrix(E,self.Mod)
def __getitem__(self,index):
assert isinstance(index,tuple) and len(index)==2
return self.ele[index[0]][index[1]]
def __setitem__(self,index,val):
assert isinstance(index,tuple) and len(index)==2
self.ele[index[0]][index[1]]=val
def Linear_Recurrence_Sequence_Value(p,x,N,Mod):
"""線形漸化式の第N項を求める.
p:漸化式 (d=|p| とする.)
x:第0項から第(d-1)項までの値
N:第N項
Mod:法
線形漸化式は x[n+d]=p[0]x[0]+p[1]x[1]+...+p[d-1] x[d-1] とする.
"""
assert len(p)==len(x)
d=len(p)
if N<d:
return x[N]
A=[p[::-1]]
for i in range(d-1):
A.append([1 if j==i else 0 for j in range(d)])
A=Modulo_Matrix(A,Mod)
v=Modulo_Matrix([[y] for y in x],Mod)
X=0
aa=pow(A,N-d+1).ele[0][::-1]
for i in range(d):
X+=aa[i]*x[i]
return X%Mod
#=================================================
p,q,r,K=map(int,input().split())
print(Linear_Recurrence_Sequence_Value([1,1,1],[p,q,r],K-1,10))
Kazun