結果
| 問題 | No.1596 Distance Sum in 2D Plane |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-07-09 21:35:10 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 104 ms / 2,000 ms |
| コード長 | 3,274 bytes |
| コンパイル時間 | 2,250 ms |
| コンパイル使用メモリ | 196,140 KB |
| 最終ジャッジ日時 | 2025-01-22 21:01:12 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 17 |
ソースコード
#include <bits/stdc++.h>
using ll = long long;
using std::cin;
using std::cout;
using std::endl;
std::mt19937 rnd(std::chrono::steady_clock::now().time_since_epoch().count());
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }
const int inf = (int)1e9 + 7;
const long long INF = 1LL << 60;
template<int mod>
struct ModInt {
int x;
ModInt() : x(0) {}
ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &p) {
if((x += p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if((x += mod - p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int) (1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while(b > 0) {
t = a / b;
std::swap(a -= t * b, b);
std::swap(u -= t * v, v);
}
return ModInt(u);
}
ModInt pow(int64_t n) const {
ModInt ret(1), mul(x);
while(n > 0) {
if(n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend std::ostream &operator<<(std::ostream &os, const ModInt &p) {
return os << p.x;
}
friend std::istream &operator>>(std::istream &is, ModInt &a) {
int64_t t;
is >> t;
a = ModInt< mod >(t);
return (is);
}
static int get_mod() { return mod; }
};
constexpr int mod = (int)1e9 + 7;
using mint = ModInt<mod>;
const int MAX = (int)1e6;
mint fac[MAX], finv[MAX], inv[MAX];
void COMinit() {
fac[0] = fac[1] = 1;
finv[0] = finv[1] = 1;
inv[1] = 1;
for (int i = 2; i < MAX; i++) {
fac[i] = fac[i - 1] * i;
inv[i] = -inv[mod % i] * (mod / i);
finv[i] = finv[i - 1] * inv[i];
}
}
mint COM(int n, int k) {
if (n < k) return 0;
if (n < 0 || k < 0) return 0;
return fac[n] * finv[k] * finv[n - k];
}
mint LCOM(ll n, ll k) {
if (n < k) return 0;
if (n < 0 || k < 0) return 0;
if (k > n / 2) k = n - k;
mint res = 1;
for (int i = 0; i < k; i++) res *= (n - i);
res *= finv[k];
return res;
}
void solve()
{
COMinit();
int n, m; cin >> n >> m;
mint res = COM(n + n, n) * (n + n);
for (int i = 0; i < m; ++i)
{
int t, x, y; cin >> t >> x >> y;
if(t == 1)
{
res -= COM(x + y, x) * COM(n - (x + 1) + n - y, n - y);
}
else
{
res -= COM(x + y, x) * COM(n - x + n - (y + 1), n - x);
}
}
cout << res << "\n";
}
int main()
{
std::cin.tie(nullptr);
std::ios::sync_with_stdio(false);
int kkt = 1;
// cin >> kkt;
while(kkt--)
solve();
return 0;
}