結果
問題 | No.1596 Distance Sum in 2D Plane |
ユーザー |
|
提出日時 | 2021-07-09 21:36:06 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 81 ms / 2,000 ms |
コード長 | 3,462 bytes |
コンパイル時間 | 1,124 ms |
コンパイル使用メモリ | 101,072 KB |
最終ジャッジ日時 | 2025-01-22 21:05:24 |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 17 |
コンパイルメッセージ
main.cpp: In function ‘int main()’: main.cpp:85:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 85 | scanf("%d %d %d", &t, &x, &y); | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
ソースコード
#include <iostream>#include <algorithm>#include <map>#include <set>#include <queue>#include <stack>#include <numeric>#include <bitset>#include <cmath>static const int MOD = 1000000007;using ll = long long;using uint = unsigned;using ull = unsigned long long;using namespace std;template<class T> constexpr T INF = ::numeric_limits<T>::max() / 32 * 15 + 208;template <uint M>struct modint {uint val;public:static modint raw(int v) { modint x; x.val = v; return x; }modint() : val(0) {}template <class T>modint(T v) { ll x = (ll)(v%(ll)(M)); if (x < 0) x += M; val = uint(x); }modint(bool v) { val = ((unsigned int)(v) % M); }modint& operator++() { val++; if (val == M) val = 0; return *this; }modint& operator--() { if (val == 0) val = M; val--; return *this; }modint operator++(int) { modint result = *this; ++*this; return result; }modint operator--(int) { modint result = *this; --*this; return result; }modint& operator+=(const modint& b) { val += b.val; if (val >= M) val -= M; return *this; }modint& operator-=(const modint& b) { val -= b.val; if (val >= M) val += M; return *this; }modint& operator*=(const modint& b) { ull z = val; z *= b.val; val = (uint)(z % M); return *this; }modint& operator/=(const modint& b) { return *this = *this * b.inv(); }modint operator+() const { return *this; }modint operator-() const { return modint() - *this; }modint pow(long long n) const { modint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; }modint inv() const { return pow(M-2); }friend modint operator+(const modint& a, const modint& b) { return modint(a) += b; }friend modint operator-(const modint& a, const modint& b) { return modint(a) -= b; }friend modint operator*(const modint& a, const modint& b) { return modint(a) *= b; }friend modint operator/(const modint& a, const modint& b) { return modint(a) /= b; }friend bool operator==(const modint& a, const modint& b) { return a.val == b.val; }friend bool operator!=(const modint& a, const modint& b) { return a.val != b.val; }};using mint = modint<MOD>;class Factorial {vector<mint> facts, factinv;public:explicit Factorial(int n) : facts(n+1), factinv(n+1) {facts[0] = 1;for (int i = 1; i < n+1; ++i) facts[i] = facts[i-1] * mint(i);factinv[n] = facts[n].inv();for (int i = n-1; i >= 0; --i) factinv[i] = factinv[i+1] * mint(i+1);}mint fact(int k) const {if(k >= 0) return facts[k]; else return factinv[-k];}mint operator[](const int &k) const {if(k >= 0) return facts[k]; else return factinv[-k];}mint C(int p, int q) const {if(q < 0 || p < q) return 0;return facts[p] * factinv[q] * factinv[p-q];}mint P(int p, int q) const {if(q < 0 || p < q) return 0;return facts[p] * factinv[p-q];}mint H(int p, int q) const {if(p < 0 || q < 0) return 0;return q == 0 ? 1 : C(p+q-1, q);}};int main() {int n, m;cin >> n >> m;Factorial f(2*(n+1));mint ans = f.C(2*n, n)*(2*n);for (int i = 0; i < m; ++i) {int t, x, y;scanf("%d %d %d", &t, &x, &y);if(t == 1) ans -= f.C(x+y, x)*f.C((n-x-1)+(n-y), (n-x-1));else ans -= f.C(x+y, x)*f.C((n-x)+(n-y-1), (n-x));}cout << ans.val << "\n";return 0;}