結果
問題 | No.1595 The Final Digit |
ユーザー |
|
提出日時 | 2021-07-09 21:49:50 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 4,850 bytes |
コンパイル時間 | 2,173 ms |
コンパイル使用メモリ | 201,640 KB |
最終ジャッジ日時 | 2025-01-22 21:28:04 |
ジャッジサーバーID (参考情報) |
judge4 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 17 |
ソースコード
#include <bits/stdc++.h>using ll = long long;using std::cin;using std::cout;using std::endl;std::mt19937 rnd(std::chrono::steady_clock::now().time_since_epoch().count());template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }const int inf = (int)1e9 + 7;const long long INF = 1LL << 60;template<int mod>struct ModInt {int x;ModInt() : x(0) {}ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}ModInt &operator+=(const ModInt &p) {if((x += p.x) >= mod) x -= mod;return *this;}ModInt &operator-=(const ModInt &p) {if((x += mod - p.x) >= mod) x -= mod;return *this;}ModInt &operator*=(const ModInt &p) {x = (int) (1LL * x * p.x % mod);return *this;}ModInt &operator/=(const ModInt &p) {*this *= p.inverse();return *this;}ModInt operator-() const { return ModInt(-x); }ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }bool operator==(const ModInt &p) const { return x == p.x; }bool operator!=(const ModInt &p) const { return x != p.x; }ModInt inverse() const {int a = x, b = mod, u = 1, v = 0, t;while(b > 0) {t = a / b;std::swap(a -= t * b, b);std::swap(u -= t * v, v);}return ModInt(u);}ModInt pow(int64_t n) const {ModInt ret(1), mul(x);while(n > 0) {if(n & 1) ret *= mul;mul *= mul;n >>= 1;}return ret;}friend std::ostream &operator<<(std::ostream &os, const ModInt &p) {return os << p.x;}friend std::istream &operator>>(std::istream &is, ModInt &a) {int64_t t;is >> t;a = ModInt< mod >(t);return (is);}static int get_mod() { return mod; }};constexpr int mod = 10;using mint = ModInt<mod>;template<class T>struct Matrix {std::vector<std::vector<T>> A;Matrix() {}Matrix(size_t n, size_t m) : A(n, std::vector<T>(m, 0)) {}Matrix(size_t n) : A(n, std::vector<T>(n, 0)) {};size_t height() const {return (A.size());}size_t width() const {return (A[0].size());}inline const std::vector<T> &operator[](int k) const {return (A.at(k));}inline std::vector<T> &operator[](int k) {return (A.at(k));}static Matrix I(size_t n) {Matrix mat(n);for(int i = 0; i < n; i++) mat[i][i] = 1;return (mat);}Matrix &operator+=(const Matrix &B) {size_t n = height(), m = width();assert(n == B.height() && m == B.width());for(int i = 0; i < n; i++)for(int j = 0; j < m; j++)(*this)[i][j] += B[i][j];return (*this);}Matrix &operator-=(const Matrix &B) {size_t n = height(), m = width();assert(n == B.height() && m == B.width());for(int i = 0; i < n; i++)for(int j = 0; j < m; j++)(*this)[i][j] -= B[i][j];return (*this);}Matrix &operator*=(const Matrix &B) {size_t n = height(), m = B.width(), p = width();assert(p == B.height());std::vector<std::vector<T>> C(n, std::vector<T>(m, 0));for(int i = 0; i < n; i++)for(int j = 0; j < m; j++)for(int k = 0; k < p; k++)C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);A.swap(C);return (*this);}Matrix &operator^=(long long k) {Matrix B = Matrix::I(height());while(k > 0) {if(k & 1) B *= *this;*this *= *this;k >>= 1LL;}A.swap(B.A);return (*this);}Matrix operator+(const Matrix &B) const {return (Matrix(*this) += B);}Matrix operator-(const Matrix &B) const {return (Matrix(*this) -= B);}Matrix operator*(const Matrix &B) const {return (Matrix(*this) *= B);}Matrix operator^(const long long k) const {return (Matrix(*this) ^= k);}friend std::ostream &operator<<(std::ostream &os, Matrix &p) {size_t n = p.height(), m = p.width();for(int i = 0; i < n; i++) {os << "[";for(int j = 0; j < m; j++) {os << p[i][j] << (j + 1 == m ? "]\n" : ",");}}return (os);}};void solve(){int p, q, r; cin >> p >> q >> r;p %= 10, q %= 10, r %= 10;ll K; cin >> K;Matrix<mint> mat(3, 3);mat[1][0] = mat[2][1] =1;mat[0][0] = mat[0][1] = mat[0][2] = 1;mat ^= (K - 3);mint res = mat[0][0] * r + mat[0][1] * q + mat[0][2] * p;cout << res << "\n";}int main(){std::cin.tie(nullptr);std::ios::sync_with_stdio(false);int kkt = 1;// cin >> kkt;while(kkt--)solve();return 0;}