結果
問題 | No.1596 Distance Sum in 2D Plane |
ユーザー |
![]() |
提出日時 | 2021-07-09 21:50:53 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 557 ms / 2,000 ms |
コード長 | 2,948 bytes |
コンパイル時間 | 2,232 ms |
コンパイル使用メモリ | 198,604 KB |
最終ジャッジ日時 | 2025-01-22 21:30:28 |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 17 |
ソースコード
#include <bits/stdc++.h> using namespace std; typedef long long ll; typedef pair<ll, ll> p_ll; template<class T> void debug(T itr1, T itr2) { auto now = itr1; while(now<itr2) { cout << *now << " "; now++; } cout << endl; } #define repr(i,from,to) for (ll i=(ll)from; i<(ll)to; i++) #define all(vec) vec.begin(), vec.end() #define rep(i,N) repr(i,0,N) #define per(i,N) for (ll i=(ll)N-1; i>=0; i--) #define popcount __builtin_popcount const ll LLINF = pow(2,61)-1; const ll INF = pow(2,30)-1; ll gcd(ll a, ll b) { if (a<b) swap(a,b); return b==0 ? a : gcd(b, a%b); } ll lcm(ll a, ll b) { return a/gcd(a,b)*b; } // ---------------------------------------------------------------------- // ---------------------------------------------------------------------- const ll MOD = pow(10,9)+7; struct MLL { ll x, mod; MLL(ll y=0, ll m=MOD) { x = y; mod = m; } MLL &operator+= (const MLL &p) { x = (x+p.x)%mod; return *this; } MLL &operator-= (const MLL &p) { x = (x-p.x+mod)%mod; return *this; } MLL &operator*= (const MLL &p) { x = (x*p.x)%mod; return *this; } MLL &operator/= (const MLL &p) { x = (x*p.inv().x)%mod; return *this; } MLL operator+ (const MLL &p) const { return MLL(*this)+=p; } MLL operator- (const MLL &p) const { return MLL(*this)-=p; } MLL operator* (const MLL &p) const { return MLL(*this)*=p; } MLL operator/ (const MLL &p) const { return MLL(*this)/=p; } bool operator== (const MLL &p) const { return x==p.x; } bool operator!= (const MLL &p) const { return x!=p.x; } bool operator< (const MLL &p) const { return x< p.x; } bool operator<= (const MLL &p) const { return x<=p.x; } bool operator> (const MLL &p) const { return x> p.x; } bool operator>= (const MLL &p) const { return x>=p.x; } MLL pow(MLL n) const { MLL result(1), p(x); ll tn = n.x; while(tn){ if (tn&1) result*=p; p*=p; tn>>=1; } return result; } MLL inv() const { return pow(MOD-2); } }; MLL operator+ (ll x, MLL p) { return (MLL)x+p; } MLL operator- (ll x, MLL p) { return (MLL)x-p; } MLL operator* (ll x, MLL p) { return (MLL)x*p; } MLL operator/ (ll x, MLL p) { return (MLL)x/p; } vector<MLL> fac; void c_fac(ll x=pow(10,7)+10) { fac.resize(x); rep(i,x) fac[i] = i ? fac[i-1]*i : 1; } MLL nck(MLL n, MLL k) { return fac[n.x]/(fac[k.x]*fac[(n-k).x]); }; ostream &operator<< (ostream &ost, const MLL &p) { return ost << p.x; } istream &operator>> (istream &ist, MLL &p) { return ist >> p.x; } // ---------------------------------------------------------------------- // ---------------------------------------------------------------------- int main() { MLL N, M; cin >> N >> M; MLL t[M.x], x[M.x], y[M.x]; rep(i,M.x) cin >> t[i] >> x[i] >> y[i]; c_fac(); MLL result = N * 2 * nck(N*2,N); rep(i,M.x) { MLL tx = t[i]==1 ? N-(x[i]+1) : N-x[i]; MLL ty = t[i]==1 ? N-y[i] : N-(y[i]+1); result -= nck(x[i]+y[i],x[i]) * nck(tx+ty,tx); } cout << result << endl; return 0; }