結果
| 問題 |
No.1595 The Final Digit
|
| コンテスト | |
| ユーザー |
qLethon
|
| 提出日時 | 2021-07-09 22:07:10 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 3 ms / 2,000 ms |
| コード長 | 6,659 bytes |
| コンパイル時間 | 2,324 ms |
| コンパイル使用メモリ | 203,412 KB |
| 最終ジャッジ日時 | 2025-01-22 21:52:12 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 17 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
template< class T >
struct Matrix {
vector< vector< T > > A;
Matrix() {}
Matrix(size_t n, size_t m) : A(n, vector< T >(m, 0)) {}
Matrix(size_t n) : A(n, vector< T >(n, 0)) {};
size_t height() const {
return (A.size());
}
size_t width() const {
return (A[0].size());
}
inline const vector< T > &operator[](int k) const {
return (A.at(k));
}
inline vector< T > &operator[](int k) {
return (A.at(k));
}
static Matrix I(size_t n) {
Matrix mat(n);
for(int i = 0; i < n; i++) mat[i][i] = 1;
return (mat);
}
Matrix &operator+=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
(*this)[i][j] += B[i][j];
return (*this);
}
Matrix &operator-=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
(*this)[i][j] -= B[i][j];
return (*this);
}
Matrix &operator*=(const Matrix &B) {
size_t n = height(), m = B.width(), p = width();
assert(p == B.height());
vector< vector< T > > C(n, vector< T >(m, 0));
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
for(int k = 0; k < p; k++)
C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
A.swap(C);
return (*this);
}
Matrix &operator^=(long long k) {
Matrix B = Matrix::I(height());
while(k > 0) {
if(k & 1) B *= *this;
*this *= *this;
k >>= 1LL;
}
A.swap(B.A);
return (*this);
}
Matrix operator+(const Matrix &B) const {
return (Matrix(*this) += B);
}
Matrix operator-(const Matrix &B) const {
return (Matrix(*this) -= B);
}
Matrix operator*(const Matrix &B) const {
return (Matrix(*this) *= B);
}
Matrix operator^(const long long k) const {
return (Matrix(*this) ^= k);
}
friend ostream &operator<<(ostream &os, Matrix &p) {
size_t n = p.height(), m = p.width();
for(int i = 0; i < n; i++) {
os << "[";
for(int j = 0; j < m; j++) {
os << p[i][j] << (j + 1 == m ? "]\n" : ",");
}
}
return (os);
}
T determinant() {
Matrix B(*this);
assert(width() == height());
T ret = 1;
for(int i = 0; i < width(); i++) {
int idx = -1;
for(int j = i; j < width(); j++) {
if(B[j][i] != 0) idx = j;
}
if(idx == -1) return (0);
if(i != idx) {
ret *= -1;
swap(B[i], B[idx]);
}
ret *= B[i][i];
T vv = B[i][i];
for(int j = 0; j < width(); j++) {
B[i][j] /= vv;
}
for(int j = i + 1; j < width(); j++) {
T a = B[j][i];
for(int k = 0; k < width(); k++) {
B[j][k] -= B[i][k] * a;
}
}
}
return (ret);
}
};
template <std::uint_fast64_t Modulus> class modint {
using u64 = std::uint_fast64_t;
u64 a;
public:
template <class INT>
constexpr modint(const INT x = 0) noexcept : a(x >= 0 ? x % Modulus : x % int_fast64_t(Modulus) + Modulus) {}
constexpr modint(const u64 x = 0) noexcept : a(x % Modulus) {}
constexpr u64 &value() noexcept { return a; }
constexpr const u64 &value() const noexcept { return a; }
constexpr modint operator+(const modint rhs) const noexcept {
return modint(*this) += rhs;
}
constexpr modint operator-(const modint rhs) const noexcept {
return modint(*this) -= rhs;
}
constexpr modint operator*(const modint rhs) const noexcept {
return modint(*this) *= rhs;
}
constexpr modint operator/(const modint rhs) const noexcept {
return modint(*this) /= rhs;
}
constexpr modint &operator+=(const modint rhs) noexcept {
a += rhs.a;
if (a >= Modulus) {
a -= Modulus;
}
return *this;
}
constexpr modint &operator-=(const modint rhs) noexcept {
if (a < rhs.a) {
a += Modulus;
}
a -= rhs.a;
return *this;
}
constexpr modint &operator*=(const modint rhs) noexcept {
a = a * rhs.a % Modulus;
return *this;
}
constexpr modint &operator/=(modint rhs) noexcept {
u64 exp = Modulus - 2;
while (exp) {
if (exp % 2) {
*this *= rhs;
}
rhs *= rhs;
exp /= 2;
}
return *this;
}
constexpr bool operator<(const modint& rhs) const noexcept {return this->a < rhs.a;}
constexpr bool operator>(const modint& rhs) const noexcept {return rhs < *this;}
constexpr bool operator<=(const modint& rhs) const noexcept {return !(*this > rhs);}
constexpr bool operator>=(const modint& rhs) const noexcept {return !(*this < rhs);}
constexpr bool operator==(const modint& rhs) const noexcept {return this->a == rhs.a;}
constexpr bool operator!=(const modint& rhs) const noexcept {return !(*this == rhs);}
constexpr modint& operator++() noexcept {
*this += modint(1);
return *this;
}
constexpr modint operator++(int) noexcept {
modint tmp(*this);
++(*this);
return tmp;
}
constexpr modint& operator--() noexcept {
*this -= modint(1);
return *this;
}
constexpr modint operator--(int) noexcept {
modint tmp(*this);
--(*this);
return tmp;
}
constexpr modint operator-() const noexcept {
return modint(0) - *this;
}
template <std::uint_fast64_t M>
friend constexpr std::ostream& operator<<(std::ostream& os, const modint<M>& rhs) noexcept {
os << rhs.a;
return os;
}
template <std::uint_fast64_t M>
friend constexpr std::istream& operator>>(std::istream& is, modint<M>& rhs) noexcept {
int64_t tmp;
is >> tmp;
rhs = modint(tmp);
return is;
}
constexpr modint pow(const u64 k) const noexcept {
if (k == 0)
return 1;
if (k % 2 == 0){
modint res = pow(k / 2);
return res * res;
}
return pow(k - 1) * modint(*this);
}
template <typename T>
operator const T (){return a;}
};
using mint = modint<10>;
int main(){
int64_t p, q, r, k;
cin >> p >> q >> r >> k;
Matrix<mint> A(3);
for (int i = 0; i < 3; i++)
A[0][i] = 1;
A[1][0] = 1;
A[2][1] = 1;
A ^= (k - 3);
Matrix<mint> x(3, 1);
x[0][0] = r; x[1][0] = q; x[2][0] = p;
int ans = (A * x)[0][0];
cout << ans << endl;
}
qLethon