結果
| 問題 | No.1595 The Final Digit |
| コンテスト | |
| ユーザー |
Example0911
|
| 提出日時 | 2021-07-09 22:16:29 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 2,000 ms |
| コード長 | 4,234 bytes |
| コンパイル時間 | 2,478 ms |
| コンパイル使用メモリ | 200,888 KB |
| 最終ジャッジ日時 | 2025-01-22 22:00:47 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 17 |
ソースコード
#include "bits/stdc++.h"
#define int long long
using namespace std;
using ll = long long;
using P = pair<ll, ll>;
const ll INF = (1LL << 61);
ll mod = 10;
struct mint {
ll x; // typedef long long ll;
mint(ll x = 0) :x((x%mod + mod) % mod) {}
mint operator-() const { return mint(-x); }
mint& operator+=(const mint a) {
if ((x += a.x) >= mod) x -= mod;
return *this;
}
mint& operator-=(const mint a) {
if ((x += mod - a.x) >= mod) x -= mod;
return *this;
}
mint& operator*=(const mint a) {
(x *= a.x) %= mod;
return *this;
}
mint operator+(const mint a) const {
mint res(*this);
return res += a;
}
mint operator-(const mint a) const {
mint res(*this);
return res -= a;
}
mint operator*(const mint a) const {
mint res(*this);
return res *= a;
}
mint pow(ll t) const {
if (!t) return 1;
mint a = pow(t >> 1);
a *= a;
if (t & 1) a *= *this;
return a;
}
// for prime mod
mint inv() const {
return pow(mod - 2);
}
mint& operator/=(const mint a) {
return (*this) *= a.inv();
}
mint operator/(const mint a) const {
mint res(*this);
return res /= a;
}
};
istream& operator>>(istream& is, mint& a) { return is >> a.x; }
ostream& operator<<(ostream& os, const mint& a) { return os << a.x; }
template< class T >
struct Matrix {
vector< vector< T > > A;
Matrix() {}
Matrix(size_t n, size_t m) : A(n, vector< T >(m, 0)) {}
Matrix(size_t n) : A(n, vector< T >(n, 0)) {};
size_t height() const {
return (A.size());
}
size_t width() const {
return (A[0].size());
}
inline const vector< T > &operator[](int k) const {
return (A.at(k));
}
inline vector< T > &operator[](int k) {
return (A.at(k));
}
static Matrix I(size_t n) {
Matrix mat(n);
for (int i = 0; i < n; i++) mat[i][i] = 1;
return (mat);
}
Matrix &operator+=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
(*this)[i][j] += B[i][j];
return (*this);
}
Matrix &operator-=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
(*this)[i][j] -= B[i][j];
return (*this);
}
Matrix &operator*=(const Matrix &B) {
size_t n = height(), m = B.width(), p = width();
assert(p == B.height());
vector< vector< T > > C(n, vector< T >(m, 0));
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
for (int k = 0; k < p; k++)
C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
A.swap(C);
return (*this);
}
Matrix &operator^=(long long k) {
Matrix B = Matrix::I(height());
while (k > 0) {
if (k & 1) B *= *this;
*this *= *this;
k >>= 1LL;
}
A.swap(B.A);
return (*this);
}
Matrix operator+(const Matrix &B) const {
return (Matrix(*this) += B);
}
Matrix operator-(const Matrix &B) const {
return (Matrix(*this) -= B);
}
Matrix operator*(const Matrix &B) const {
return (Matrix(*this) *= B);
}
Matrix operator^(const long long k) const {
return (Matrix(*this) ^= k);
}
friend ostream &operator<<(ostream &os, Matrix &p) {
size_t n = p.height(), m = p.width();
for (int i = 0; i < n; i++) {
os << "[";
for (int j = 0; j < m; j++) {
os << p[i][j] << (j + 1 == m ? "]\n" : ",");
}
}
return (os);
}
T determinant() {
Matrix B(*this);
assert(width() == height());
T ret = 1;
for (int i = 0; i < width(); i++) {
int idx = -1;
for (int j = i; j < width(); j++) {
if (B[j][i] != 0) idx = j;
}
if (idx == -1) return (0);
if (i != idx) {
ret *= -1;
swap(B[i], B[idx]);
}
ret *= B[i][i];
T vv = B[i][i];
for (int j = 0; j < width(); j++) {
B[i][j] /= vv;
}
for (int j = i + 1; j < width(); j++) {
T a = B[j][i];
for (int k = 0; k < width(); k++) {
B[j][k] -= B[i][k] * a;
}
}
}
return (ret);
}
};
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
int p, q, r, K; cin >> p >> q >> r >> K;
Matrix<mint> A(3, 3), B(3, 1);
A[0][0] = 1;
A[0][1] = 1;
A[0][2] = 1;
A[1][0] = 1;
A[2][1] = 1;
B[0][0] = r;
B[1][0] = q;
B[2][0] = p;
A ^= K - 1;
A *= B;
cout << A[2][0] << endl;
return 0;
}
Example0911