結果

問題 No.1596 Distance Sum in 2D Plane
ユーザー qLethon
提出日時 2021-07-09 22:16:30
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 339 ms / 2,000 ms
コード長 4,712 bytes
コンパイル時間 2,191 ms
コンパイル使用メモリ 197,620 KB
最終ジャッジ日時 2025-01-22 22:01:00
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 17
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
template <std::uint_fast64_t Modulus> class modint {
using u64 = std::uint_fast64_t;
u64 a;
public:
template <class INT>
constexpr modint(const INT x = 0) noexcept : a(x >= 0 ? x % Modulus : x % int_fast64_t(Modulus) + Modulus) {}
constexpr modint(const u64 x = 0) noexcept : a(x % Modulus) {}
constexpr u64 &value() noexcept { return a; }
constexpr const u64 &value() const noexcept { return a; }
constexpr modint operator+(const modint rhs) const noexcept {
return modint(*this) += rhs;
}
constexpr modint operator-(const modint rhs) const noexcept {
return modint(*this) -= rhs;
}
constexpr modint operator*(const modint rhs) const noexcept {
return modint(*this) *= rhs;
}
constexpr modint operator/(const modint rhs) const noexcept {
return modint(*this) /= rhs;
}
constexpr modint &operator+=(const modint rhs) noexcept {
a += rhs.a;
if (a >= Modulus) {
a -= Modulus;
}
return *this;
}
constexpr modint &operator-=(const modint rhs) noexcept {
if (a < rhs.a) {
a += Modulus;
}
a -= rhs.a;
return *this;
}
constexpr modint &operator*=(const modint rhs) noexcept {
a = a * rhs.a % Modulus;
return *this;
}
constexpr modint &operator/=(modint rhs) noexcept {
u64 exp = Modulus - 2;
while (exp) {
if (exp % 2) {
*this *= rhs;
}
rhs *= rhs;
exp /= 2;
}
return *this;
}
constexpr bool operator<(const modint& rhs) const noexcept {return this->a < rhs.a;}
constexpr bool operator>(const modint& rhs) const noexcept {return rhs < *this;}
constexpr bool operator<=(const modint& rhs) const noexcept {return !(*this > rhs);}
constexpr bool operator>=(const modint& rhs) const noexcept {return !(*this < rhs);}
constexpr bool operator==(const modint& rhs) const noexcept {return this->a == rhs.a;}
constexpr bool operator!=(const modint& rhs) const noexcept {return !(*this == rhs);}
constexpr modint& operator++() noexcept {
*this += modint(1);
return *this;
}
constexpr modint operator++(int) noexcept {
modint tmp(*this);
++(*this);
return tmp;
}
constexpr modint& operator--() noexcept {
*this -= modint(1);
return *this;
}
constexpr modint operator--(int) noexcept {
modint tmp(*this);
--(*this);
return tmp;
}
constexpr modint operator-() const noexcept {
return modint(0) - *this;
}
template <std::uint_fast64_t M>
friend constexpr std::ostream& operator<<(std::ostream& os, const modint<M>& rhs) noexcept {
os << rhs.a;
return os;
}
template <std::uint_fast64_t M>
friend constexpr std::istream& operator>>(std::istream& is, modint<M>& rhs) noexcept {
int64_t tmp;
is >> tmp;
rhs = modint(tmp);
return is;
}
constexpr modint pow(const u64 k) const noexcept {
if (k == 0)
return 1;
if (k % 2 == 0){
modint res = pow(k / 2);
return res * res;
}
return pow(k - 1) * modint(*this);
}
template <typename T>
operator const T (){return a;}
};
const constexpr int64_t p = 1e9 + 7;
using mint = modint<p>;
template<class Modint>
class Binomial{
vector<Modint> fact(uint64_t n){
vector<Modint> f(n + 1);
f[0] = 1;
for (uint64_t i = 0; i < n; i++)
f[i + 1] = Modint(i + 1) * f[i];
return f;
}
vector<Modint> invfact(uint64_t n){
vector<Modint> inv(n + 1);
inv[n] = Modint(1) / f[n];
for (uint64_t i = n; i > 0; i--)
inv[i - 1] = inv[i] * i;
return inv;
}
public:
vector<Modint> f, invf;
Binomial(uint64_t n){
f = fact(n);
invf = invfact(n);
}
Modint binomial(int64_t a, int64_t b){
if (a < b)
return 0;
if (a < 0 or b < 0)
return 0;
return f[a] * invf[b] * invf[a - b];
}
};
int main(){
int n;
cin >> n;
Binomial<mint> binom(2 * n);
mint s = binom.binomial(2 * n, n) * 2 * n;
int m;
cin >> m;
for (int i = 0; i < m; i++){
int t, h, w;
cin >> t >> h >> w;
if (t == 1)
s -= binom.binomial(h + w, h) * binom.binomial(n - (h + 1) + n - w, n - w);
else
s -= binom.binomial(h + w, h) * binom.binomial(n - h + n - (w + 1), n - h);
}
cout << s << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0