結果

問題 No.1596 Distance Sum in 2D Plane
ユーザー emakemak
提出日時 2021-07-09 22:40:21
言語 C++17
(gcc 12.2.0 + boost 1.81.0)
結果
AC  
実行時間 252 ms / 2,000 ms
コード長 5,776 bytes
コンパイル時間 3,243 ms
コンパイル使用メモリ 207,100 KB
実行使用メモリ 10,944 KB
最終ジャッジ日時 2023-09-14 09:57:45
合計ジャッジ時間 8,027 ms
ジャッジサーバーID
(参考情報)
judge15 / judge14
このコードへのチャレンジ(β)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 173 ms
10,824 KB
testcase_01 AC 173 ms
10,772 KB
testcase_02 AC 251 ms
10,832 KB
testcase_03 AC 252 ms
10,808 KB
testcase_04 AC 249 ms
10,944 KB
testcase_05 AC 248 ms
10,684 KB
testcase_06 AC 249 ms
10,760 KB
testcase_07 AC 248 ms
10,884 KB
testcase_08 AC 248 ms
10,884 KB
testcase_09 AC 247 ms
10,824 KB
testcase_10 AC 246 ms
10,640 KB
testcase_11 AC 225 ms
10,748 KB
testcase_12 AC 226 ms
10,760 KB
testcase_13 AC 225 ms
10,876 KB
testcase_14 AC 171 ms
10,844 KB
testcase_15 AC 171 ms
10,764 KB
testcase_16 AC 171 ms
10,896 KB
testcase_17 AC 172 ms
10,680 KB
testcase_18 AC 172 ms
10,640 KB
testcase_19 AC 173 ms
10,828 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

template<typename T>
ostream& operator<<(ostream &os, vector<T> &v){
    string sep = " ";
    if(v.size()) os << v[0];
    for(int i=1; i<v.size(); i++) os << sep << v[i];
    return os;
}

template<typename T>
istream& operator>>(istream &is, vector<T> &v){
    for(int i=0; i<v.size(); i++) is >> v[i];
    return is;
}

#ifdef DBG
void debug_(){ cout << endl; }
template<typename T, typename... Args>
void debug_(T&& x, Args&&... xs){
    cout << x << " "; debug_(forward<Args>(xs)...);
}
#define dbg(...) debug_(__VA_ARGS__)
#else
#define dbg(...)
#endif

#include<bits/stdc++.h>

// Extended Euclid's greatest common divisor algorithm
// Find (x, y)
// where
//   - a*x + b*y = gcd(a, b)$
long long ext_gcd(long long a, long long b, long long &x, long long &y){
    if(b == 0){
        x = 1; y = 0; return a;
    }
    long long nx, ny;
    long long g = ext_gcd(b, a%b, nx, ny);
    x = ny;
    y = nx - a / b * ny;
    return g;
}

template<long long m=1000000007>
struct modint {
    typedef long long ll;
    ll x;
    static constexpr ll mod() { return m; }
    constexpr modint(ll x=0): x((m+x%m)%m) {}
    modint<m> operator-() const { return modint(m-x); }
    modint<m>& operator+=(const modint<m> o) { x=(x+o.x)%m; return *this; }
    modint<m>& operator+=(const ll o) { return (*this)+=modint(o); }
    modint<m>& operator-=(const modint<m> o) { return (*this)+=(-o); }
    modint<m>& operator-=(const ll o) { return (*this)-=modint(o); }
    modint<m>& operator*=(const modint<m> o) { x = x*o.x%m; return *this; }
    modint<m>& operator*=(const ll o) { return (*this)*=modint(o); }
    modint<m>& operator/=(const modint<m> o) { return (*this)*=o.inv(); }
    modint<m>& operator/=(const ll o) { return (*this)/=modint(o); }
    friend modint<m> operator+(modint<m> l, const modint<m> r) { l+=r; return l; }
    friend modint<m> operator+(modint<m> l, const ll r) { l+=r; return l; }
    friend modint<m> operator+(const ll l, modint<m> r) { r+=l; return r; }
    friend modint<m> operator-(modint<m> l, const modint<m> r) { l-=r; return l; }
    friend modint<m> operator-(modint<m> l, const ll r) { l-=r; return l; }
    friend modint<m> operator-(const ll l, modint<m> r) { r*=-1; r+=l; return r; }
    friend modint<m> operator*(modint<m> l, const modint<m> r) { l*=r; return l; }
    friend modint<m> operator*(modint<m> l, const ll r) { l*=r; return l; }
    friend modint<m> operator*(const ll l, modint<m> r) { r*=l; return r; }
    friend modint<m> operator/(modint<m> l, const modint<m> r) { l/=r; return l; }
    friend modint<m> operator/(modint<m> l, const ll r) { l/=r; return l; }
    friend modint<m> operator/(const ll l, const modint<m> r) { return modint(l)/r; }
    bool operator==(const modint<m> o) const { return x==o.x; }
    bool operator!=(const modint<m> o) const { return x!=o.x; }
    friend bool operator==(const ll l, const modint<m> r) { return modint<m>(l) == r; }
    friend bool operator!=(const ll l, const modint<m> r) { return modint<m>(l) != r; }
    friend std::ostream& operator<<(std::ostream &os, const modint<m> x) { return os << x.x; }

    modint<m> pow(ll k) const {
        if(k==0) return modint<m>(1);
        if(k%2) return pow(k-1)*x;
        modint<m> z = pow(k/2); return z*z;
    }

    modint<m> inv() const {
        ll y,z;
        ext_gcd(x, m, y, z);
        return modint<m>(y);
    }
};

using mint = modint<>;

template<typename mint = mint>
struct Comb {
    typedef long long ll;
    const ll m = mint::mod();
    std::vector<mint> fact, fact_inv;
    Comb(int n_max=2000005) {
        fact.assign(n_max, 0);
        fact_inv.assign(n_max, 0);
        fact[0] = 1;
        fact_inv[0] = 1;
        for(int i=1; i<std::min((ll)n_max, m); i++){
            fact[i] = fact[i-1] * i;
            fact_inv[i] = fact[i].inv();
        }
    }
    mint operator() (ll n, ll k) const {
        if(n < m){
            return fact[n] * fact_inv[k] * fact_inv[n-k];
        } else {
            return comb_ext(n, k);
        }
    }

// Modular factorial of n, also counting p's appearance e
// n! = a * p^e
// return: a % p
// n! = n * (n-1) * ... * (k*p+1) *
//      (k*p) * (k*p-1) * ... ((k-1)*p+1) *
//      ...
//      p * (p-1) * ... * 2 * 1   (k = floor(n/p))
//    = (n%p) * ... * 1 *
//      (k*p) * (p-1) * ... * 1 *
//      p * (p-1) * ... * 1       (mod p, preserving p's multiples)
//    = (n%p)! * p^k * k! * (p-1)^k
//    = (n%p)! * p^k * k! * (p-1)^(k%2)
//
// From the facts:
//   (p-1)! = p-1 (mod p) (c.f. Willson's theorem)
//   (p-2)**2 = 1 (mod p)
    mint fact_ext(ll n, ll &e) const {
        if(n == 0){
            e = 0;
            return mint(1);
        }

        mint na = fact_ext(n/m, e);
        e += n/m;
        mint a = na * fact[n%m];
        if((n/m)%2) a = a * (m-1);
        return a;
    }

// Modular combination (n, m) given module p
// (n, m) = n!/(n-m)!m!
//        = (a_n * p^(e_n)) / ((a_{n-m} * p^(e_{n-m}) * (a_m * p^e_m))
//        = a_n / (a_{n-m} * a_m) * p^(e_n - e_{n-m} - e_m)
    mint comb_ext (ll n, ll k) const {
        ll e1,e2,e3;
        mint a1 = fact_ext(n, e1);
        mint a2 = fact_ext(k, e2);
        mint a3 = fact_ext(n-k, e3);

        if(e1 > e2+e3) return 0;
        else return a1*(a2*a3).inv();
    }
};

int main() {
    ios_base::sync_with_stdio(false);
    cout << setprecision(20) << fixed;

    Comb c(500000);

    int n, m;
    cin >> n >> m;
    mint ans = 2*n * c(2*n, n);
    for(int i=0; i<m; i++){
        int t, x, y;
        cin >> t >> x >> y;
        if(t == 1){
            ans -= c(x+y, x) * c(n-x-1+n-y, n-y);
        } else {
            ans -= c(x+y, x) * c(n-x+n-y-1, n-x);
        }
    }

    cout << ans << endl;

    return 0;
}
0