結果

問題 No.1602 With Animals into Institute 2
ユーザー hitonanodehitonanode
提出日時 2021-07-10 16:11:50
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 568 ms / 4,000 ms
コード長 13,110 bytes
コンパイル時間 2,487 ms
コンパイル使用メモリ 185,576 KB
実行使用メモリ 41,356 KB
最終ジャッジ日時 2024-07-02 02:35:23
合計ジャッジ時間 10,887 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 5 ms
6,940 KB
testcase_04 AC 5 ms
6,940 KB
testcase_05 AC 9 ms
6,940 KB
testcase_06 AC 270 ms
35,964 KB
testcase_07 AC 262 ms
36,124 KB
testcase_08 AC 568 ms
41,356 KB
testcase_09 AC 491 ms
40,156 KB
testcase_10 AC 506 ms
39,900 KB
testcase_11 AC 499 ms
39,788 KB
testcase_12 AC 492 ms
40,076 KB
testcase_13 AC 497 ms
40,632 KB
testcase_14 AC 490 ms
39,856 KB
testcase_15 AC 486 ms
40,140 KB
testcase_16 AC 490 ms
40,520 KB
testcase_17 AC 486 ms
39,956 KB
testcase_18 AC 8 ms
6,940 KB
testcase_19 AC 7 ms
6,944 KB
testcase_20 AC 8 ms
6,944 KB
testcase_21 AC 7 ms
6,940 KB
testcase_22 AC 7 ms
6,940 KB
testcase_23 AC 7 ms
6,940 KB
testcase_24 AC 8 ms
6,944 KB
testcase_25 AC 8 ms
6,940 KB
testcase_26 AC 8 ms
6,944 KB
testcase_27 AC 2 ms
6,944 KB
testcase_28 AC 2 ms
6,940 KB
testcase_29 AC 2 ms
6,940 KB
testcase_30 AC 2 ms
6,940 KB
testcase_31 AC 2 ms
6,940 KB
testcase_32 AC 2 ms
6,944 KB
testcase_33 AC 2 ms
6,940 KB
testcase_34 AC 2 ms
6,944 KB
testcase_35 AC 2 ms
6,940 KB
testcase_36 AC 2 ms
6,940 KB
testcase_37 AC 2 ms
6,940 KB
testcase_38 AC 2 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T, typename V>
void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }
template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <typename T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <typename T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
#if __cplusplus >= 201703L
template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; }
#endif
template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; }
template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl
#define dbgif(cond, x) ((cond) ? cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl : cerr)
#else
#define dbg(x) (x)
#define dbgif(cond, x) 0
#endif

#include <cassert>
#include <queue>
#include <tuple>
#include <vector>
// This implementation is based on: https://gist.github.com/wata-orz/d3037bd0b919c76dd9ddc0379e1e3192
template <class T, T INF, class G, G (*op)(G, G), G (*e)()> struct SSSUP {
    int V;
    std::vector<std::vector<std::tuple<int, T, G>>> to;
    SSSUP(int n) : V(n), to(n) { static_assert(INF > 0, "INF must be positive"); }
    void add_edge(int u, int v, T len, G g) {
        assert(u >= 0 and u < V);
        assert(v >= 0 and v < V);
        assert(len >= 0);
        to[u].emplace_back(v, len, g);
        to[v].emplace_back(u, len, g);
    }

    int s;
    std::vector<T> dist_sp, dist;
    std::vector<int> parent, depth;
    std::vector<G> psi;

    std::vector<int> uf_ps;
    int find(int x) {
        if (uf_ps[x] == -1) {
            return x;
        } else {
            int r = find(uf_ps[x]);
            return uf_ps[x] = r;
        }
    }
    void unite(int r, int c) { uf_ps[c] = r; }

    void solve(int s_) {
        s = s_;
        assert(s >= 0 and s < V);

        // Solve SSSP
        {
            dist_sp.assign(V, INF);
            depth.assign(V, -1), parent.assign(V, -1);
            psi.assign(V, e());
            std::priority_queue<std::pair<T, int>, std::vector<std::pair<T, int>>, std::greater<>> que;
            dist_sp[s] = 0, depth[s] = 0;
            que.emplace(0, s);
            while (que.size()) {
                T d, l;
                int u, v;
                G g;
                std::tie(d, u) = que.top();
                que.pop();
                if (dist_sp[u] != d) continue;
                for (const auto &p : to[u]) {
                    std::tie(v, l, g) = p;
                    const auto d2 = d + l;
                    if (dist_sp[v] > d2) {
                        dist_sp[v] = d2, depth[v] = depth[u] + 1, parent[v] = u, psi[v] = op(psi[u], g);
                        que.emplace(d2, v);
                    }
                }
            }
        }

        // sssup()
        uf_ps.assign(V, -1);
        std::priority_queue<std::tuple<T, int, int>, std::vector<std::tuple<T, int, int>>, std::greater<>> que;
        for (int u = 0; u < V; u++) {
            for (int i = 0; i < int(to[u].size()); i++) {
                int v;
                T l;
                G g;
                std::tie(v, l, g) = to[u][i];
                if (u < v and !(op(psi[u], g) == psi[v])) que.emplace(dist_sp[u] + dist_sp[v] + l, u, i);
            }
        }

        dist.assign(V, INF);
        while (que.size()) {
            T h;
            int u0, i;
            std::tie(h, u0, i) = que.top();
            que.pop();
            const int v0 = std::get<0>(to[u0][i]);
            int u = find(u0), v = find(v0);
            std::vector<int> bs;
            while (u != v) {
                if (depth[u] > depth[v]) {
                    bs.push_back(u), u = find(parent[u]);
                } else {
                    bs.push_back(v), v = find(parent[v]);
                }
            }
            for (const int x : bs) {
                unite(u, x);
                dist[x] = h - dist_sp[x];
                for (int i = 0; i < int(to[x].size()); i++) {
                    int y;
                    T l;
                    G g;
                    std::tie(y, l, g) = to[x][i];
                    if (op(psi[x], g) == psi[y]) {
                        que.emplace(dist[x] + dist_sp[y] + l, x, i);
                    }
                }
            }
        }
        for (int i = 0; i < V; i++) {
            if (!(psi[i] == e()) and dist_sp[i] < dist[i]) dist[i] = dist_sp[i];
        }
    }
};

// https://gist.github.com/wata-orz/d3037bd0b919c76dd9ddc0379e1e3192
constexpr lint INF = 1LL << 60;

struct SSSP {
    int s;
    vector<lint> dist;
    vector<int> parent, depth;
};

SSSP sssp(const vector<vector<pint>> &g, int s) {
    vector<lint> dist(g.size(), INF);
    vector<int> depth(g.size()), parent(depth.size());
    priority_queue<plint> que;
    dist[s] = 0;
    depth[s] = 0;
    que.emplace(0, s);
    while (que.size()) {
        auto [d, u] = que.top();
        que.pop();
        d = -d;
        if (dist[u] != d) {
            continue;
        }
        for (auto [v, l] : g[u]) {
            lint d2 = d + l;
            if (chmin(dist[v], d2)) {
                depth[v] = depth[u] + 1;
                parent[v] = u;
                que.emplace(-d2, v);
            }
        }
    }
    return SSSP{s, dist, parent, depth};
}

// UnionFind Tree (0-indexed), based on size of each disjoint set
struct UnionFind {
    vector<int> ps;
    UnionFind(int N = 0) : ps(N, -1) {
    }
    int find(int x) {
        if (ps[x] == -1) return x;
        else {
            int r = find(ps[x]);
            ps[x] = r;
            return r;
        }
    }
    void unite(int r, int c) { ps[c] = r; }
};


vector<lint> sssup(const vector<vector<pint>> &g, const SSSP &sp, const vector<vector<int>> is_consistent) {
    REP(i, g.size()) assert(g[i].size() == is_consistent[i].size());
    vector<lint> dist(g.size(), INF);
    UnionFind uf(g.size());
    using P = tuple<lint, int, int>;
    priority_queue<P> que;
    REP(u, g.size()) {
        REP(i, g[u].size()) {
            auto [v, l] = g[u][i];
            if (u < v and !is_consistent[u][i]) {
                que.emplace(-(sp.dist[u] + sp.dist[v] + l), u, i);
            }
        }
    }
    while (que.size()) {
        auto [h, u0, i] = que.top();
        que.pop();
        h = -h;
        const int v0 = g[u0][i].first;
        int u = uf.find(u0), v = uf.find(v0);
        vector<int> bs;
        while (u != v) {
            if (sp.depth[u] > sp.depth[v]) {
                bs.push_back(u);
                u = uf.find(sp.parent[u]);
            } else {
                bs.push_back(v);
                v = uf.find(sp.parent[v]);
            }
        }
        for (auto x : bs) {
            uf.unite(u, x);
            dist[x] = h - sp.dist[x];
            REP(i, g[x].size()) {
                if (is_consistent[x][i]) {
                    const auto [y, l] = g[x][i];
                    que.emplace(-(dist[x] + sp.dist[y] + l), x, i);
                }
            }
        }
    }
    return dist;
}

// Weighted UnionFind
template <typename T> struct WeightedUnionFind {
    std::vector<int> par, sz;
    std::vector<T> pot;
    WeightedUnionFind(int N = 0) : par(N), sz(N, 1), pot(N) { std::iota(par.begin(), par.end(), 0); }
    int find(int x) {
        if (par[x] != x) {
            int r = find(par[x]);
            pot[x] = pot[x] ^ pot[par[x]], par[x] = r;
        }
        return par[x];
    }
    bool unite(int s, int t, T rel_diff) {
        // Relate s and t by t = s + rel_diff
        // Return false iff contradiction happens.
        rel_diff = rel_diff ^ weight(s) ^ weight(t);
        if ((s = find(s)) == (t = find(t))) return rel_diff == 0;
        if (sz[s] < sz[t]) std::swap(s, t);
        par[t] = s, sz[s] += sz[t], pot[t] = rel_diff;
        return true;
    }
    T weight(int x) {
        find(x);
        return pot[x];
    }
    T diff(int s, int t) { return weight(t) ^ weight(s); }
    int count(int x) { return sz[find(x)]; }
    bool same(int s, int t) { return find(s) == find(t); }
};

unsigned op(unsigned x, unsigned y) { return x ^ y; }
unsigned e() { return 0; }

int main() {
    int N, M, K;
    cin >> N >> M >> K;
    constexpr lint INF = 1LL << 60;
    SSSUP<lint, INF, unsigned, op, e> graph(N);

    vector<tuple<int, int, int>> edges;
    REP(e, M) {
        int a, b, c;
        string x;
        cin >> a >> b >> c >> x;
        unsigned m = 0;
        for (auto c : x) m = m * 2 + c - '0';
        a--, b--;
        graph.add_edge(a, b, c, m);
        graph.add_edge(b, a, c, m);
    }
    graph.solve(N - 1);
    REP(i, N - 1) {
        cout << (graph.dist[i] == INF ? -1 : graph.dist[i]) << '\n';
    }
}
0