結果
| 問題 |
No.1596 Distance Sum in 2D Plane
|
| コンテスト | |
| ユーザー |
marurunn11
|
| 提出日時 | 2021-07-10 16:29:55 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 738 ms / 2,000 ms |
| コード長 | 18,748 bytes |
| コンパイル時間 | 24,061 ms |
| コンパイル使用メモリ | 292,088 KB |
| 最終ジャッジ日時 | 2025-01-23 00:23:58 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 17 |
ソースコード
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#include "bits/stdc++.h"
#ifdef _MSC_VER
#include <intrin.h> //gcc上ではこれがあると動かない。__popcnt, umul128 等用のincludeファイル。
#define __builtin_popcount __popcnt
#define __builtin_popcountll __popcnt64
inline unsigned int __builtin_ctz(unsigned int x) { unsigned long r; _BitScanForward(&r, x); return r; } // 1 の位から何個 0 が連なっているか。
#pragma warning(disable : 4996)
#pragma intrinsic(_umul128)
#endif
//#include <atcoder/all>
//using namespace atcoder;
using namespace std;
//---------- 多倍長関連 ----------
//#include <boost/multiprecision/cpp_int.hpp>
//#include <boost/multiprecision/cpp_dec_float.hpp>
//using namespace boost::multiprecision;
typedef long long ll;
typedef long double ld;
#define int long long
//#define double long double
#define LL128 boost::multiprecision::int128_t
#define LL boost::multiprecision::cpp_int
#define LD100 boost::multiprecision::cpp_dec_float_100
#define LD50 boost::multiprecision::cpp_dec_float_50
#define rep(i, n) for(long long i = 0; i < (n); i++)
#define rep2(i, s, n) for(long long i = (s); i < (n); i++)
#define sqrt(d) pow((ld) (d), 0.50)
#define PII pair<int, int>
#define MP make_pair
#define PB push_back
#define ALL(v) v.begin(), v.end()
const int INF = std::numeric_limits<int>::max() / 2 - 100000000;
const long long INF2 = std::numeric_limits<long long>::max() / 2 - 100000000;
const ld pi = acos(-1);
constexpr int MOD = 1000000007; //1e9 + 7
//constexpr int MOD = 1000000009; //1e9 + 9
//constexpr int MOD = 998244353; // 7 * 17 * 2^23 + 1
//---------- chmax, min 関連 ----------
template<class T> inline void chmax(T& a, T b) {
if (a < b) a = b;
}
template<class T> inline void chmin(T& a, T b) {
if (a > b) a = b;
}
//---------- 整数の根号関連 ----------
//res * res <= n なる最大の整数 res を返す。
template<typename T = long long>
T floor_sqrt(T n) {
assert(n >= 0);
T res = max((T)floor(sqrt(n)) - (T)2, (T)0);
while ((res + 1) * (res + 1) <= n) res++;
return res;
}
//res * res >= n なる最小の整数 res を返す。
template<typename T = long long>
T ceil_sqrt(T n) {
T res = floor_sqrt(n);
if (res * res == n) return res;
else return res + 1;
}
template<typename T = long long>
T round_sqrt(T n) {
T res = floor_sqrt(n);
if (abs(n - res * res) >= abs(n - (res + 1) * (res + 1))) res++;
return res;
}
//---------- gcd, lcm ----------
template<typename T = long long>
T my_gcd(T a, T b) {
if (b == (T)0) return a;
return my_gcd<T>(b, a % b);
}
template<typename T = long long>
T my_lcm(T a, T b) {
return a / my_gcd<T>(a, b) * b;
}
// ax + by = gcd(a, b) を解く。返り値は、gcd(a, b)。
//但し、a, b が負である場合は、返り値が正であることは保障されない。
long long my_gcd_ext(long long a, long long b, long long& x, long long& y) {
if (b == 0) {
x = 1; y = 0;
return a;
}
long long tempo = my_gcd_ext(b, a % b, y, x);
//bx' + ry' = gcd(a, b) → (qb + r)x + by = gcd(a, b) に戻さないといけない。// (r = a % b)
//b(x' - qy') + (bq + r)y' = gcd(a, b) と同値変形できるから、
// x = y', y = x' - qy'
y -= (a / b) * x;
return tempo;
}
//中国式剰余の定理 (CRT)
// x = base1 (mod m1) かつ x = base2 (mod m2) を解く。
// リターン値を (r, m) とすると解は x = r (mod m) で、m = lcm(m1, m2)
// 解なしの場合は (0, -1) をリターン
pair<long long, long long> CRT(long long base1, long long m1, long long base2, long long m2) {
long long p, q;
long long gcd0 = my_gcd_ext(m1, m2, p, q);
if ((base2 - base1) % gcd0 != 0) return make_pair(0, -1);
long long lcm0 = m1 * (m2 / gcd0); // 括弧がないとオーバーフローのリスクがある。
p *= (base2 - base1) / gcd0;
p %= (m2 / gcd0);
q *= (base2 - base1) / gcd0;
q %= (m1 / gcd0);
long long r = (base1 + m1 * p) % lcm0;
if (r < 0) r += lcm0;
return make_pair(r, lcm0);
}
//M を法として、a の逆元を返す。但し gcd(a, M) = 1。
long long my_invmod(long long a, long long M) {
long long x = 0, y = 0;
long long memo = my_gcd_ext(a, M, x, y);
assert(memo == 1LL);
x %= M;
if (x < 0) x += M;
return x;
}
//繰り返し2乗法
//N^aの、Mで割った余りを求める。
template<typename T = long long>
T my_pow(T N, T a, T M) {
T tempo;
if (a == 0) {
return 1;
}
else {
if (a % 2 == 0) {
tempo = my_pow(N, a / 2, M);
return (tempo * tempo) % M;
}
else {
tempo = my_pow(N, a - 1, M);
return (tempo * N) % M;
}
}
}
// 繰り返し2乗法
// T = modint でも動く。
template<typename T = long long>
T my_pow(T N, long long a) {
T tempo;
if (a == 0) {
return 1;
}
else {
if (a % 2 == 0) {
tempo = my_pow(N, a / 2);
return (tempo * tempo);
}
else {
tempo = my_pow(N, a - 1);
return (tempo * N);
}
}
}
// base を底としたときの、n の i桁目を、v.at(i) に入れる。
vector<signed> ll_to_vector(signed base, long long n) {
long long tempo = n;
long long tempo2 = n; //桁数を求めるときに使う
signed n_digit = 1;
while (tempo2 >= base) {
tempo2 /= base;
n_digit++;
}
vector<signed> v(n_digit, 0); // v のサイズを適切に調整。
long long denominator = my_pow<long long>((long long)base, (long long)(n_digit - 1));
for (signed i = 0; i < n_digit; i++) {
v.at(i) = tempo / denominator;
tempo -= v.at(i) * denominator;
denominator /= base;
}
return v;
}
// M 桁に足りない場合、0 を追加して強制的に M 桁にする。
vector<signed> ll_to_vector(signed base, long long n, int M) {
vector<signed> v = ll_to_vector(base, n);
//assert((int)v.size() <= M);
if ((int)v.size() >= M) return v;
else {
int diff = M - v.size();
vector<signed> res(diff, 0);
for (int i = 0; i < (int)v.size(); i++) res.emplace_back(v.at(i));
return res;
}
}
//エラトステネスの篩で、prime で ないところに false を入れる。O(n loglog n)
// T = int (defalt, sieve が ll で間に合うことはないので。)
// vector<char> に替えるとむしろ遅くなる。
template<typename T = int>
vector<bool> sieve_bool(T N) {
vector<bool> res(N + 1, true);
res.at(0) = false;
res.at(1) = false;
for (T i = 2; 2 * i <= N; i++) {
res.at(2 * i) = false;
}
for (T i = 3; i * i <= N; i += 2) {
//ここからは奇数のみ探索。i の倍数に false を入れる。
if (res.at(i)) {
T j = i * i; // i^2 未満の i の倍数には、すでに false が入っているはず。
while (j <= N) {
res.at(j) = false;
j += 2 * i;
}
}
}
return res;
};
// n + 1 の サイズの vector を返す。res.at(i) には、i の 1 以外で最小の約数を入れる。
// res.at(i) == i で、i != 0, 1 なら i は素数。
// 2e8 なら、2.3 ~ 2.4 sec 程度で終わる。sieve_bool は 0.7 sec なので、3 倍強遅い。ll にすると、3.2 sec に伸びてしまう。
// T = int (defalt, sieve が ll で間に合うことはないので。)
template<typename T = int>
vector<T> sieve(T n) {
n++; // n まで判定する。配列サイズは +1。
vector<T> res(n, 0);
for (T i = 1; i < n; i++) {
if (i % 2 == 0) res.at(i) = 2; // 偶数をあらかじめ処理。
else res.at(i) = i; // 奇数には自分自身を入れる。
}
for (T i = 3; i * i < n; i += 2) {
//ここからは奇数のみ探索。i の倍数に i を入れる。
if (res.at(i) == i) {
T j = i * i; // i^2 未満の i の倍数には、すでに最小の約数が入っているはず。
while (j < n) {
if (res.at(j) == j) res.at(j) = i;
j += 2 * i;
}
}
}
return res;
};
//O (sqrt(n)) で素数判定する用。
bool is_prime(long long N) {
if (N == 1 || N == 0) return false;
if (N == 2 || N == 3) return true;
if (N % 2 == 0) return false;
if (N % 3 == 0) return false;
for (long long i = 1; (6 * i + 1) * (6 * i + 1) <= N; ++i) {
if (N % (6 * i + 1) == 0) return false;
}
for (long long i = 0; (6 * i + 5) * (6 * i + 5) <= N; ++i) {
if (N % (6 * i + 5) == 0) return false;
}
return true;
}
// 素因分解アルゴリズム (O(sqrt(N)) → O(N^0.25) のρ法も持っている。
// T = long long (defalt)
template<typename T = long long>
map<T, T> PrimeFactor(T N) {
map<T, T> res;
T i = 2;
while (i * i <= N) {
while (N % i == 0) {
res[i]++;
N /= i;
}
i += 1 + (i % 2); //i == 2 の場合だけ +1, その他の場合は +2
}
if (N > 1) res[N]++; //sqrt((元の N)) より大きな素因数は高々1つしかない。
return res;
}
//関数 sieve で得た、vector min_factor を持ってるときに、素因数分解を高速で行うための関数。
// T = int (defalt, sieve が ll で間に合うことはないので。)
template<typename T = int>
map<T, T> PrimeFactor2(T target, vector<T>& min_factor) {
map<T, T> res;
if (min_factor.empty() || (T)min_factor.size() - 1 < target) min_factor = sieve<T>(target);
while (target > 1) {
res[min_factor[target]]++;
target /= min_factor[target];
}
return res;
}
//約数全列挙を O(sqrt(N)) で行うための関数。
vector<long long> count_dividers(long long target) {
vector <long long> dividers, tempo;
long long i = 1;
while (i * i < target + 1) {
if (target % i == 0) {
dividers.push_back(i);
if (i < target / i) tempo.push_back(target / i); // if節がないと、平方数の時、sqrt(target) がダブルカウントされる。
}
i++;
}
for (long long j = 0; j < (long long)tempo.size(); j++) {
dividers.push_back(tempo.at(tempo.size() - 1 - j));
}
return dividers;
}
//関数 sieve で得た、vector min_factor を持ってるときに、約数全列挙を高速で行うための関数。
// T = int (defalt, sieve が ll で間に合うことはないので。)
template<typename T = int>
vector<T> count_dividers2(T target, vector<T>& min_factor, bool is_sort = false) {
vector<T> dividers = { 1 };
map<T, T> memo = PrimeFactor2<T>(target, min_factor);
for (auto&& iter = memo.begin(); iter != memo.end(); iter++) {
vector <T> tempo = dividers;
for (T k = 0; k < (T)tempo.size(); k++) {
T times = 1;
for (T j = 1; j <= (iter->second); j++) {
times *= iter->first;
dividers.push_back(tempo[k] * times);
}
}
}
if (is_sort) sort(dividers.begin(), dividers.end()); //sortしないと小さい順に並ばないが、必要ないなら消しても良い。
return dividers;
}
class UnionFind {
public:
vector<int> parent;
vector<int> rank;
vector<int> v_size;
UnionFind(int N) : parent(N), rank(N, 0), v_size(N, 1) {
rep(i, N) {
parent[i] = i;
}
}
int root(int x) {
if (parent[x] == x) return x;
return parent[x] = root(parent[x]); //経路圧縮
}
void unite(int x, int y) {
int rx = root(x);
int ry = root(y);
if (rx == ry) return; //xの根とyの根が同じなので、何もしない。
if (rank[rx] < rank[ry]) {
parent[rx] = ry;
v_size[ry] += v_size[rx];
}
else {
parent[ry] = rx;
v_size[rx] += v_size[ry];
if (rank[rx] == rank[ry]) rank[rx]++;
}
}
bool same(int x, int y) {
return (root(x) == root(y));
}
int count_tree() {
int N = parent.size();
int res = 0;
rep(i, N) {
if (root(i) == i) res++;
}
return res;
}
int size(int x) {
return v_size[root(x)];
}
};
class wUnionFind {
public:
vector<int> parent;
vector<int> diff_weight; //親との差分。
vector<int> rank;
wUnionFind(int N) : parent(N), diff_weight(N, 0), rank(N, 0) {
rep(i, N) {
parent.at(i) = i;
}
}
int root(int x) {
if (parent.at(x) == x) return x;
int r = root(parent.at(x));
diff_weight.at(x) += diff_weight.at(parent.at(x)); //累積和
return parent.at(x) = r;
}
//x の重みを出力する関数。
int weight(int x) {
root(x);
return diff_weight.at(x);
}
//weight.at(y) - weight.at(x) == w となるようにする。
bool unite(int x, int y, int w) {
int rx = root(x);
int ry = root(y);
int diff_weight_to_ry_from_rx = w + weight(x) - weight(y);
if (rx == ry) return false; //xの根とyの根が同じなので、何もしない。
if (rank.at(rx) < rank.at(ry)) {
parent.at(rx) = ry;
diff_weight.at(rx) = -diff_weight_to_ry_from_rx;
}
else {
parent.at(ry) = rx;
diff_weight.at(ry) = diff_weight_to_ry_from_rx;
if (rank.at(rx) == rank.at(ry)) rank.at(rx)++;
}
return true;
}
bool same(int x, int y) {
return (root(x) == root(y));
}
int count_tree() {
int N = parent.size();
int res = 0;
rep(i, N) {
if (root(i) == i) res++;
}
return res;
}
};
// 幾何。二点間距離。
ld calc_dist(int x1, int y1, int x2, int y2) {
int tempo = (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);
ld res = sqrt((ld)tempo);
return res;
}
//ランレングス圧縮
vector<pair<int, char>> RunLength(string S) {
int N = S.size();
vector<pair<int, char>> memo;
if (N == 1) {
memo.push_back(MP(1, S.at(0)));
return memo;
}
int tempo = 1;
for (int i = 1; i < N; i++) {
if (i != N - 1) {
if (S.at(i) == S.at(i - 1)) tempo++;
else {
memo.push_back(MP(tempo, S.at(i - 1)));
tempo = 1;
}
}
else {
if (S.at(i) == S.at(i - 1)) {
tempo++;
memo.push_back(MP(tempo, S.at(i - 1)));
}
else {
memo.push_back(MP(tempo, S.at(i - 1)));
memo.push_back(MP(1, S.at(i)));
}
}
}
return memo;
}
void printf_ld(ld res) {
printf("%.12Lf\n", res);
//cout << std::fixed << std::setprecision(12) << res << endl;
}
template<typename T = long long>
void print_vec(vector<T> v) {
int N = v.size();
rep(i, N) {
if (i != N - 1) cout << v.at(i) << " ";
else cout << v.at(i) << endl;
}
}
//mint 構造体。自動で mod を取る。
//m は定数である必要があるので入力を用いることはできない。
template<int m, typename T> class mint {
public:
T val;
//---------- コンストラクタ ----------
constexpr mint(T v = 0) noexcept : val(v% m) {
if (val < 0) val += m;
}
//------------------------------ 二項演算子のオーバーロード ------------------------------
constexpr mint& operator += (const mint& r) noexcept {
val += r.val;
if (val >= m) val -= m;
return *this;
}
constexpr mint& operator -= (const mint& r) noexcept {
val -= r.val;
if (val < 0) val += m;
return *this;
}
constexpr mint& operator *= (const mint& r) noexcept {
val = val * r.val % m;
return *this;
}
constexpr mint& operator /= (const mint& r) noexcept {
//a * u + b * v = 1 を互除法で解く。但し、gcd(a, m) == 1 でなければならない。
T a = r.val, b = m, u = 1, v = 0;
while (b) {
T q = a / b;
a -= q * b; swap(a, b); //互除法。余りをとって swap。
u -= q * v; swap(u, v);
}
val = val * u % m;
if (val < 0) val += m;
return *this;
}
constexpr mint operator + (const mint& r) const noexcept { return mint(*this) += r; }
constexpr mint operator - (const mint& r) const noexcept { return mint(*this) -= r; }
constexpr mint operator * (const mint& r) const noexcept { return mint(*this) *= r; }
constexpr mint operator / (const mint& r) const noexcept { return mint(*this) /= r; }
constexpr bool operator == (const mint& r) const noexcept {
return this->val == r.val;
}
constexpr bool operator != (const mint& r) const noexcept {
return this->val != r.val;
}
//------------------------------ 単項演算子のオーバーロード ------------------------------
//---------- 前置インクリメントのオーバーロード ----------
constexpr mint operator ++() noexcept { this->val++; if (this->val >= m) this->val -= m; return mint(*this); }
constexpr mint operator --() noexcept { this->val--; if (this->val < 0) this->val += m; return mint(*this); }
//---------- 後置インクリメントのオーバーロード ----------
constexpr mint operator++(signed) noexcept { mint temp(val); ++val; if (val >= m) val -= m; return temp; }
constexpr mint operator--(signed) noexcept { mint temp(val); --val; if (val < 0) val += m; return temp; }
constexpr mint operator -() const noexcept { return mint(-val); }
//---------- 入出力のオーバーロード ----------
friend constexpr ostream& operator << (ostream& os, const mint<m, T>& x) noexcept {
return os << x.val;
}
friend istream& operator >> (istream& is, mint<m, T>& x) noexcept {
T init_val;
is >> init_val;
x = mint<m, T>(init_val);
return is;
}
//---------- 繰り返し二乗法 ----------
constexpr mint<m, T> modpow(const mint<m, T>& a, T n) noexcept {
if (n == 0) return 1;
auto t = modpow(a, n / 2);
t = t * t;
if (n & 1) t = t * a;
return t;
}
//---------- 逆元 ----------
constexpr mint<m, T> inverse() noexcept {
mint<m, T> e(1);
return e / (*this);
}
//---------- 二項係数 N_C_a ----------
/*
constexpr mint<m, T> modcomb(const T& N, const T& a) noexcept {
if (N < a) return 0;
mint<m, T> answer = 1;
rep(i, a) {
answer *= mint<m, T>(N - i);
answer *= mint<m, T>(i + 1).inverse();
}
return answer;
}
*/
};
using modint = mint<MOD, long long>;
// 階乗。x ! まで計算する。結果は dp_fac に保存する。20 ! = 2.43e18 まで long long に入る。
// dp の処理前の初期値は 0 にする。modint にも適用可能。
template<typename T = modint>
vector<T> dp_fac;
template<typename T = modint>
T factorial(int x, vector<T>& dp = dp_fac<T>) {
//既に計算済み
if ((int)dp.size() > x) {
return dp.at(x);
}
int n = dp.size();
//dp サイズを x + 1 に伸ばす。
for (int i = n; i < x + 1; i++) {
if (i == 0) dp.push_back((T)1);
else dp.push_back(dp.back() * i);
}
return dp.at(x);
}
//N_C_a
template<typename T = modint, typename U = int>
T my_comb(U N, U a) {
if (N < a) return (T)0;
T ans = factorial<T>(N);
ans /= factorial<T>(a);
ans /= factorial<T>(N - a);
return ans;
}
ld now_clock() {
ld t = (ld)clock() / (ld)CLOCKS_PER_SEC;
return t;
}
signed main() {
int N, M;
cin >> N >> M;
vector<int> t(M), x(M), y(M);
rep(i, M) cin >> t[i] >> x[i] >> y[i];
modint res = 1;
res = my_comb(2 * N, N);
res *= 2 * N;
rep(i, M) {
if (t.at(i) == 1) {
modint tempo = 1;
int x1 = x.at(i);
int y1 = y.at(i);
int x2 = N - (x.at(i) + 1);
int y2 = N - y.at(i);
tempo *= my_comb(x1 + y1, x1);
tempo *= my_comb(x2 + y2, x2);
res -= tempo;
}
else {
modint tempo = 1;
int x1 = x.at(i);
int y1 = y.at(i);
int x2 = N - x.at(i);
int y2 = N - (y.at(i) + 1);
tempo *= my_comb(x1 + y1, x1);
tempo *= my_comb(x2 + y2, x2);
res -= tempo;
}
}
cout << res << endl;
}
marurunn11