結果

問題 No.1600 Many Shortest Path Problems
ユーザー haruki_Kharuki_K
提出日時 2021-07-14 21:06:25
言語 C++17
(gcc 13.2.0 + boost 1.83.0)
結果
AC  
実行時間 529 ms / 4,000 ms
コード長 21,889 bytes
コンパイル時間 4,633 ms
コンパイル使用メモリ 237,604 KB
実行使用メモリ 35,280 KB
最終ジャッジ日時 2023-09-16 23:04:20
合計ジャッジ時間 21,070 ms
ジャッジサーバーID
(参考情報)
judge12 / judge14
このコードへのチャレンジ(β)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
4,380 KB
testcase_01 AC 2 ms
4,380 KB
testcase_02 AC 1 ms
4,376 KB
testcase_03 AC 1 ms
4,376 KB
testcase_04 AC 525 ms
35,168 KB
testcase_05 AC 529 ms
34,568 KB
testcase_06 AC 1 ms
4,380 KB
testcase_07 AC 2 ms
4,376 KB
testcase_08 AC 1 ms
4,376 KB
testcase_09 AC 1 ms
4,376 KB
testcase_10 AC 207 ms
7,800 KB
testcase_11 AC 327 ms
9,248 KB
testcase_12 AC 464 ms
15,872 KB
testcase_13 AC 503 ms
26,368 KB
testcase_14 AC 514 ms
34,632 KB
testcase_15 AC 2 ms
4,380 KB
testcase_16 AC 1 ms
4,376 KB
testcase_17 AC 515 ms
21,124 KB
testcase_18 AC 515 ms
34,092 KB
testcase_19 AC 2 ms
4,376 KB
testcase_20 AC 2 ms
4,376 KB
testcase_21 AC 496 ms
21,100 KB
testcase_22 AC 2 ms
4,380 KB
testcase_23 AC 2 ms
4,380 KB
testcase_24 AC 522 ms
34,280 KB
testcase_25 AC 2 ms
4,376 KB
testcase_26 AC 1 ms
4,376 KB
testcase_27 AC 2 ms
4,376 KB
testcase_28 AC 2 ms
4,376 KB
testcase_29 AC 254 ms
26,776 KB
testcase_30 AC 287 ms
25,176 KB
testcase_31 AC 469 ms
21,052 KB
testcase_32 AC 472 ms
21,464 KB
testcase_33 AC 1 ms
4,380 KB
testcase_34 AC 2 ms
4,376 KB
testcase_35 AC 365 ms
35,280 KB
testcase_36 AC 227 ms
33,844 KB
testcase_37 AC 1 ms
4,380 KB
testcase_38 AC 235 ms
25,064 KB
testcase_39 AC 1 ms
4,376 KB
testcase_40 AC 268 ms
25,316 KB
testcase_41 AC 211 ms
27,004 KB
testcase_42 AC 227 ms
25,016 KB
testcase_43 AC 235 ms
25,284 KB
testcase_44 AC 273 ms
24,056 KB
testcase_45 AC 249 ms
26,824 KB
testcase_46 AC 241 ms
25,240 KB
testcase_47 AC 291 ms
25,080 KB
testcase_48 AC 285 ms
25,396 KB
testcase_49 AC 1 ms
4,376 KB
testcase_50 AC 2 ms
4,376 KB
testcase_51 AC 2 ms
4,380 KB
testcase_52 AC 2 ms
4,376 KB
testcase_53 AC 1 ms
4,380 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// >>> TEMPLATES
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
using i32 = int32_t;
using i64 = int64_t;
using u32 = uint32_t;
using u64 = uint64_t;
#define int ll
#define rep(i, n) for (int i = 0; i < (int)(n); i++)
#define rep1(i, n) for (int i = 1; i <= (int)(n); i++)
#define repR(i, n) for (int i = (int)(n)-1; i >= 0; i--)
#define rep1R(i, n) for (int i = (int)(n); i >= 1; i--)
#define loop(i, a, B) for (int i = a; i B; i++)
#define loopR(i, a, B) for (int i = a; i B; i--)
#define all(x) begin(x), end(x)
#define allR(x) rbegin(x), rend(x)
#define rng(x, l, r) begin(x) + (l), begin(x) + (r)
#define pb push_back
#define eb emplace_back
#define fst first
#define snd second
template <class A, class B> constexpr auto mp(A &&a, B &&b) { return make_pair(forward<A>(a), forward<B>(b)); }
template <class... T> constexpr auto mt(T&&... x) { return make_tuple(forward<T>(x)...); }
template <class Int> auto constexpr inf_ = numeric_limits<Int>::max()/2-1;
auto constexpr INF32 = inf_<int32_t>;
auto constexpr INF64 = inf_<int64_t>;
auto constexpr INF   = inf_<int>;
#ifdef LOCAL
#include "debug.hpp"
#else
#define dump(...) (void)(0)
#define say(x) (void)(0)
#define debug if (0)
#endif
template <class T, class Comp> struct pque : priority_queue<T, vector<T>, Comp> { vector<T> &data() { return this->c; } void clear() { this->c.clear(); } };
template <class T> using pque_max = pque<T, less<T>>;
template <class T> using pque_min = pque<T, greater<T>>;
template <class T, class = typename T::iterator, enable_if_t<!is_same<T, string>::value, int> = 0>
ostream& operator<<(ostream& os, T const& a) { bool f = true; for (auto const& x : a) os << (f ? "" : " ") << x, f = false; return os; }
template <class T, size_t N, enable_if_t<!is_same<T, char>::value, int> = 0>
ostream& operator<<(ostream& os, const T (&a)[N]) { bool f = true; for (auto const& x : a) os << (f ? "" : " ") << x, f = false; return os; }
template <class T, class = decltype(begin(declval<T&>())), class = typename enable_if<!is_same<T, string>::value>::type>
istream& operator>>(istream& is, T &a) { for (auto& x : a) is >> x; return is; }
template <class T, class S> ostream& operator<<(ostream& os, pair<T, S> const& p) { return os << p.first << " " << p.second; }
template <class T, class S> istream& operator>>(istream& is, pair<T, S>& p) { return is >> p.first >> p.second; }
struct IOSetup { IOSetup() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); } } iosetup;
template <class F> struct FixPoint : private F {
    constexpr FixPoint(F&& f) : F(forward<F>(f)) {}
    template <class... T> constexpr auto operator()(T&&... x) const { return F::operator()(*this, forward<T>(x)...); }
};
struct MakeFixPoint { template <class F> constexpr auto operator|(F&& f) const { return FixPoint<F>(forward<F>(f)); } };
#define MFP MakeFixPoint()|
#define def(name, ...) auto name = MFP [&](auto &&name, __VA_ARGS__)
template <class T, size_t d> struct vec_impl {
    using type = vector<typename vec_impl<T, d-1>::type>;
    template <class... U> static type make_v(size_t n, U&&... x) { return type(n, vec_impl<T, d-1>::make_v(forward<U>(x)...)); }
};
template <class T> struct vec_impl<T, 0> { using type = T; static type make_v(T const& x = {}) { return x; } };
template <class T, size_t d = 1> using vec = typename vec_impl<T, d>::type;
template <class T, size_t d = 1, class... Args> auto make_v(Args&&... args) { return vec_impl<T, d>::make_v(forward<Args>(args)...); }
template <class T> void quit(T const& x) { cout << x << endl; exit(0); }
template <class T, class U> constexpr bool chmin(T& x, U const& y) { if (x > (T)y) { x = (T)y; return true; } return false; }
template <class T, class U> constexpr bool chmax(T& x, U const& y) { if (x < (T)y) { x = (T)y; return true; } return false; }
template <class It> constexpr auto sumof(It b, It e) { return accumulate(b, e, typename iterator_traits<It>::value_type{}); }
template <class T> int sz(T const& x) { return x.size(); }
template <class C, class T> int lbd(C const& v, T const& x) { return lower_bound(begin(v), end(v), x)-begin(v); }
template <class C, class T> int ubd(C const& v, T const& x) { return upper_bound(begin(v), end(v), x)-begin(v); }
constexpr int64_t mod(int64_t x, int64_t m) { assert(m > 0); return (x %= m) < 0 ? x+m : x; }
constexpr int64_t div_floor(int64_t x, int64_t y) { assert(y != 0); return x/y - ((x^y) < 0 and x%y); }
constexpr int64_t div_ceil(int64_t x, int64_t y) { assert(y != 0); return x/y + ((x^y) > 0 and x%y); }
constexpr int dx[] = { 1, 0, -1, 0, 1, -1, -1, 1 };
constexpr int dy[] = { 0, 1, 0, -1, 1, 1, -1, -1 };
constexpr int popcnt(ll x) { return __builtin_popcountll(x); }
mt19937_64 seed_{random_device{}()};
template <class Int> Int rand(Int a, Int b) { return uniform_int_distribution<Int>(a, b)(seed_); }
i64 irand(i64 a, i64 b) { return rand<i64>(a, b); } // [a, b]
u64 urand(u64 a, u64 b) { return rand<u64>(a, b); } //
template <class It> void shuffle(It l, It r) { shuffle(l, r, seed_); }
template <class T> vector<T> &operator--(vector<T> &v) { for (T &x : v) --x; return v; }
template <class T> vector<T> &operator++(vector<T> &v) { for (T &x : v) ++x; return v; }
// <<<
// >>> modint

template <uint32_t md>
class modint {
    static_assert(md < (1u<<31), "");
    using M = modint;
    using i64 = int64_t;
    uint32_t x;
public:
    static constexpr uint32_t mod = md;
    constexpr modint(i64 x = 0) : x((x%=md) < 0 ? x+md : x) { }
    constexpr i64 val() const { return x; }
    constexpr explicit operator i64() const { return x; }
    constexpr bool operator==(M r) const { return x == r.x; }
    constexpr bool operator!=(M r) const { return x != r.x; }
    constexpr M operator+() const { return *this; }
    constexpr M operator-() const { return M()-*this; }
    constexpr M& operator+=(M r) { x += r.x; x = (x < md ? x : x-md); return *this; }
    constexpr M& operator-=(M r) { x += md-r.x; x = (x < md ? x : x-md); return *this; }
    constexpr M& operator*=(M r) { x = (uint64_t(x)*r.x)%md; return *this; }
    constexpr M& operator/=(M r) { return *this *= r.inv(); }
    constexpr M operator+(M r) const { return M(*this) += r; }
    constexpr M operator-(M r) const { return M(*this) -= r; }
    constexpr M operator*(M r) const { return M(*this) *= r; }
    constexpr M operator/(M r) const { return M(*this) /= r; }
    friend constexpr M operator+(i64 x, M y) { return M(x)+y; }
    friend constexpr M operator-(i64 x, M y) { return M(x)-y; }
    friend constexpr M operator*(i64 x, M y) { return M(x)*y; }
    friend constexpr M operator/(i64 x, M y) { return M(x)/y; }
    constexpr M inv() const { assert(x > 0); return pow(md-2); }
    constexpr M pow(i64 n) const {
        assert(not (x == 0 and n == 0));
        if (n < 0) return inv().pow(-n);
        M v = *this, r = 1;
        for (; n > 0; n >>= 1, v *= v) if (n&1) r *= v;
        return r;
    }
#ifdef LOCAL
    friend string to_s(M r) { return to_s(r.val(), mod); }
#endif
    friend ostream& operator<<(ostream& os, M r) { return os << r.val(); }
    friend istream& operator>>(istream& is, M &r) { i64 x; is >> x; r = x; return is; }
};

// <<<
//constexpr int64_t MOD = 998244353;
constexpr int64_t MOD = 1e9+7;
using mint = modint<MOD>;
mint sign(int n) { return n & 1 ? -1 : +1; }
// >>> mod table

template <class mint> struct ModTable {
    vector<mint> fact, finv;
    void calc(int n) {
        int old = fact.size();
        if (n < old) return;
        n += 1000;
        fact.resize(n+1);
        finv.resize(n+1);
        if (old == 0) {
            fact[0] = fact[1] = finv[0] = finv[1] = 1;
            old = 2;
        }
        for (auto i = old; i <= n; i++) fact[i] = fact[i-1] * i;
        finv[n] = mint(1) / fact[n];
        for (auto i = n-1; i >= old; i--) finv[i] = finv[i+1] * (i+1);
    }
};
ModTable<mint> mod_tab;

mint fact(int n) {
    assert(0 <= n);
    return mod_tab.calc(n), mod_tab.fact[n];
}
mint finv(int n) {
    assert(0 <= n);
    return mod_tab.calc(n), mod_tab.finv[n];
}
mint comb(int n, int k) {
    if (n < 0 || k < 0 || n < k) return 0;
    mod_tab.calc(n);
    return mod_tab.fact[n] * mod_tab.finv[k] * mod_tab.finv[n-k];
}
mint perm(int n, int k) {
    assert(k >= 0); assert(n >= k);
    mod_tab.calc(n);
    return mod_tab.fact[n] * mod_tab.finv[n-k];
}

// <<<
// >>> HLD

#ifndef EDGE_INFO
#define EDGE_INFO
constexpr int dest(int v) { return v; }
template <class E, class = decltype(declval<E>().to)>
constexpr int dest(E const& e) { return e.to; }
constexpr int cost(...) { return 1; }
template <class E, class = decltype(declval<E>().cost)>
constexpr auto cost(E const& e) { return e.cost; }
template <class E> using cost_t = decltype(cost(declval<E>()));
#endif
template <class edge> struct HLD {
    int n, m = 0, root;
    vector<int32_t> roots;
    vector<vector<edge>> g;
    vector<int32_t> id, inv, head, sz, par;
    vector<cost_t<edge>> dep;
    bool built = false;
    HLD() : n(0), root(-1) {};
    HLD(int n, int root = 0) : n(n), root(root), g(n), id(n), inv(n), head(n), sz(n), par(n), dep(n) {
//        if (n == 1) build();
    }
    vector<edge> const& operator[](int i) const {
        assert(built);
        assert(0 <= i); assert(i < (int)g.size());
        return g[i];
    }
    template <class... Args> void add_edge(int x, int y, Args&&... args) {
        g[x].push_back({y, args...});
        g[y].push_back({x, args...});
//        if (++m == n-1) build();
    }
    void build() {
//        assert(m == n-1);
        fill(sz.begin(), sz.end(), 1);
        fill(all(par), -1);
        dep[root] = 0, par[root] = -1, head[root] = root;
        int time = 0;
//        dfs1(root), dfs2(root, time);
        roots.clear();
        rep (x, n) if (par[x] < 0) roots.push_back(x), dfs1(x), dfs2(x, time);
        rep (x, g.size()) inv[id[x]] = x;
        built = true;
    }
    int lca(int x, int y) const {
        assert(built);
        while (true) {
            if (id[x] > id[y]) swap(x, y);
            if (head[x] == head[y]) return x;
            y = par[head[y]];
        }
    }
    cost_t<edge> dist(int x, int y) const {
        assert(built);
        return dep[x] + dep[y] - 2*dep[lca(x, y)];
    }
    int eid(int x, int y) const {
        assert(built);
        if (x == par[y]) return id[y];
        if (y == par[x]) return id[x];
        assert(false);
        return -1;
    }
    int vid(int x) const { assert(built); return id[x]; }
    int in(int x) const { assert(built); return id[x]; }
    int out(int x) const { assert(built); return id[x] + sz[x]; }
    pair<int, int> subtree(int x) const { return { in(x), out(x) }; }
    pair<int, int> split_size(int x, int y) const {
        assert(built);
        if (x == par[y]) return { n-sz[y], sz[y] };
        if (y == par[x]) return { sz[x], n-sz[y] };
        assert(false);
        return { -1, -1 };
    }
    int meet(int x, int y, int z) const {
        return lca(x, y) ^ lca(y, z) ^ lca(z, x);
    }
    bool is_ancestor(int x, int y) const { // excluding x == y
        return in(x) < in(y) and out(y) <= out(x);
    }
    int step(int x, int y) const { // move one step from x toward y
        assert(built);
        assert(x != y);
        if (not is_ancestor(x, y)) return par[x];
        while (true) {
            if (head[x] == head[y]) return dest(g[x][0]);
            y = head[y];
            if (x == par[y]) return y;
            y = par[y];
        }
    }
    int climb(int x, cost_t<edge> d) const {
        assert(built);
        assert(0 <= d); assert(d <= dep[x]);
        auto const dep_y = dep[x] - d;
        while (true) {
            x = head[x];
            if (dep[x] <= dep_y) return inv[id[x] + dep_y - dep[x]];
            x = par[x];
        }
    }
    // jump from x toward y by distance d
    int jump(int x, int y, cost_t<edge> d) const {
        assert(built);
        auto const z = lca(x, y);
        auto const dist = dep[x] + dep[y] - 2*dep[z];
        return d <= dep[x] - dep[z] ? climb(x, d) : climb(y, dist-d);
    }
    vector<pair<int, int>> path(int x, int y, bool with_lca) const {
        assert(built);
        static vector<pair<int, int>> ret;
        ret.clear();
        while (true) {
            if (id[x] > id[y]) swap(x, y);
            if (head[x] == head[y]) {
                ret.emplace_back(id[x] + (with_lca ? 0 : 1), id[y]+1);
                return ret;
            } else {
                ret.emplace_back(id[head[y]], id[y]+1);
                y = par[head[y]];
            }
        }
    }
    auto vertices(int x, int y) const { return path(x, y, true); }
    auto edges(int x, int y) const { return path(x, y, false); }

    void dfs1(int x) {
        for (auto &e : g[x]) {
            if (dest(e) == par[x]) {
                swap(e, g[x].back());
                g[x].pop_back();
                break;
            }
        }
        for (auto &e : g[x]) {
            const int y = dest(e);
            par[y] = x;
            dep[y] = dep[x] + cost(e);
            dfs1(y);
            sz[x] += sz[y];
            if (sz[y] > sz[dest(g[x][0])]) swap(e, g[x][0]);
        }
    }
    void dfs2(int x, int &time) {
        id[x] = time++;
        for (auto const& e : g[x]) {
            const int y = dest(e);
            head[y] = (y == dest(g[x][0]) ? head[x] : y);
            dfs2(y, time);
        }
    }
};

// <<<
// >>> union find

struct UnionFind {
    int n, sz; // id : 0...n-1
    vector<int32_t> par;

    UnionFind(int n = 0) : n(n), sz(n), par(n, -1) { }
    void clear() {
        rep (i, n) par[i] = -1;
        sz = n;
    }
    int root(int x) {
        assert(0 <= x); assert(x < n);
        return par[x] < 0 ? x : par[x] = root(par[x]);
    }
    bool unite(int x, int y) {
        x = root(x), y = root(y);
        if (x == y) return false;
        sz--;
        if (par[x] < par[y]) swap(x, y);
        par[y] += par[x];
        par[x] = y;
        return true;
    }
    bool same(int x, int y) { return root(x) == root(y); }
    int size(int x) { return -par[root(x)]; }
    int size() const { return sz; }
    vector<vector<int32_t>> groups() {
        vector<vector<int32_t>> g(n);
        rep (i, n) if (par[i] < 0) g[i].reserve(-par[i]);
        rep (i, n) g[root(i)].push_back(i);
        vector<vector<int32_t>> grp; grp.reserve(size());
        rep (i, n) if (g[i].size()) grp.emplace_back(move(g[i]));
        return grp;
    }
};

// <<<
// >>> lazy segment tree

template <class Handler> struct LazySegtree : Handler {
    using Value  = typename Handler::Value;
    using Action = typename Handler::Action;
    using Handler::unit_value;  // () -> Value
    using Handler::unit_action; // () -> Action
    using Handler::merge;       // (Value, Value) -> Value
    using Handler::compose;     // (Action, Action) -> Action
    using Handler::act;         // (Action, Value) -> Value

    vector<Value> v;
    vector<Action> a;
    int n, lg;

    LazySegtree() {}
    template <class... T> LazySegtree(T&&... x) { init(forward<T>(x)...); }

    template <class F, class = decltype(declval<F>()(0))>
    void init(int n, F gen)  {
        assert(n >= 0);
        this->n = n;
        this->lg = (n == 0 ? 0 : __lg(2*n-1));
        v.resize(2*n);
        a.assign(n, unit_action());
        for (int i = 0; i < n; i++) v[n+i] = gen(i);
        for (int i = n-1; i >= 1; i--) v[i] = merge(v[i<<1], v[i<<1|1]);
    }
//    void init(int n) { init(n, [&](int) { return unit_value(); }); }
    void init(int n, Value const& x) { init(n, [&](int) { return x; }); }
    void init(vector<Value> const& v) { init(v.size(), [&](int i) { return v[i]; }); }
    int size() const { return n; }

    void act_at(Action const& x, int i) {
        if (i < n) a[i] = compose(x, a[i]);
        v[i] = act(x, v[i]);
    }
    void flush(int k) {
        if (n <= k || a[k] == unit_action()) return;
        act_at(a[k], k<<1);
        act_at(a[k], k<<1|1);
        a[k] = unit_action();
    }
    void flush(int l, int r) {
        for (int p = lg; p; --p) flush(l >> p), flush((r - 1) >> p);
    }
    Value get(int l, int r) {
        assert(0 <= l); assert(l <= r); assert(r <= n);
        l += n, r += n;
        flush(l, r);
        Value x = unit_value(), y = unit_value();
        for ( ; l < r; l >>= 1, r >>= 1) {
            if (l & 1) x = merge(x, v[l++]);
            if (r & 1) y = merge(v[--r], y);
        }
        return merge(x, y);
    }
    void build(int i) {
        i >>= __builtin_ctz(i);
        while (i >>= 1) v[i] = merge(v[i<<1], v[i<<1|1]);
    }
    void apply(int l, int r, Action const& x) {
        assert(0 <= l); assert(l <= r); assert(r <= n);
        l += n, r += n;
        flush(l, r);
        for (int a = l, b = r; a < b; a >>= 1, b >>= 1) {
            if (a & 1) act_at(x, a++);
            if (b & 1) act_at(x, --b);
        }
        build(l); build(r);
    }
    Value operator[](int i) const { return get(i); }
    Value get(int i) const {
        assert(0 <= i); assert(i < n);
        Value x = v[i += n];
        while (i >>= 1) x = act(a[i], x);
        return x;
    }
    void set(int i, Value const& x) {
        assert(0 <= i); assert(i < n);
        i += n;
        for (int p = lg; p; --p) flush(i >> p);
        v[i] = x;
        while (i >>= 1) v[i] = merge(v[i<<1], v[i<<1|1]);
    }
    template <class F> int max_right(int l, F f) {
        assert(0 <= l); assert(l <= size());
        assert(f(unit_value()));
        l += n;
        const int r = size() << 1;
        for (int p = lg; p; p--) flush(l >> p);
        Value x = unit_value();
        while (true) {
            if (l == r) return size();
            int k = __builtin_ctz(l | 1 << __lg(r - l));
            auto y = merge(x, v[l >> k]);
            if (not f(y)) { l >>= k; break; }
            x = y, l += 1 << k;
        }
        while (l < size()) {
            flush(l);
            auto y = merge(x, v[l <<= 1]);
            if (f(y)) x = y, l++;
        }
        return l - size();
    }
    template <class F> int min_left(int r, F f) {
        assert(0 <= r); assert(r <= size());
        assert(f(unit_value()));
        r += n;
        const int l = size();
        for (int p = lg; p; p--) flush((r - 1) >> p);
        Value x = unit_value();
        while (true) {
            if (l == r) return 0;
            int k = __builtin_ctz(r | 1 << __lg(r - l));
            auto y = merge(v[(r >> k) - 1], x);
            if (not f(y)) { r >>= k; --r; break; }
            x = y, r -= 1 << k;
        }
        while (r < size()) {
            flush(r);
            r = r << 1 | 1;
            auto y = merge(v[r], x);
            if (f(y)) x = y, r--;
        }
        return r + 1 - size();
    }
    vector<Value> dat() const {
        vector<Value> ret(size());
        for (int i = 0; i < size(); i++) ret[i] = get(i);
        return ret;
    }
};
template <class _Value, class _Action> struct Handler {
    using Value = _Value;
    using Action = _Action;
    constexpr static Value unit_value() { return {}; }
    constexpr static Action unit_action() { return {}; }
    constexpr static Value merge(Value const& x, Value const& y) { return x * y; }
    constexpr static Action compose(Action const& x, Action const& y) { return x * y; }
    constexpr static Value act(Action const& x, Value const& y) { return x(y); }
};

// <<<

struct MinChmin {
    using Value = int;
    using Action = int;
    constexpr static Value unit_value() { return INF; }
    constexpr static Action unit_action() { return INF; }
    constexpr static Value merge(Value const& x, Value const& y) {
        return min(x, y);
    }
    constexpr static Action compose(Action const& x, Action const& y) {
        return min(x, y);
    }
    constexpr static Value act(Action const& x, Value const& y) {
        return min(x, y);
    }
};

int32_t main() {
    int n, m; cin >> n >> m;
    vector<pair<int, int>> es;
    rep (_, m) {
        int x, y; cin >> x >> y; x--, y--;
        es.eb(x, y);
    }

    UnionFind uf(n);
    struct edge { int to, id; };
    HLD<edge> g(n);
    vector<int> used(m);
    rep (i, m) {
        auto [x, y] = es[i];
        if (uf.unite(x, y)) {
            used[i] = true;
            g.add_edge(x, y, i);
        }
    }
    g.build();

    LazySegtree<MinChmin> seg(n, INF);
    rep (i, m) if (not used[i]) {
        auto [x, y] = es[i];
        for (auto [l, r] : g.edges(x, y)) {
            seg.apply(l, r, i);
        }
    }
    dump(seg.dat());

    vector<mint> dep(n);
    {
        def (dfs, int x) -> void {
            for (auto [y, id] : g[x]) {
                dep[y] = dep[x] + mint(2).pow(id+1);
                dfs(y);
            }
        };
        for (int x : g.roots) dfs(x);
    }
    auto wdist = [&](int x, int y) {
        int z = g.lca(x, y);
        return dep[x] + dep[y] - 2*dep[z];
    };

    int Q; cin >> Q;
    while (Q--) {
        int x, y, z; cin >> x >> y >> z; x--, y--, z--;
        auto [a, b] = es[z];
        dump(x, y, z, a, b);
        if (not uf.same(x, y)) {
            cout << -1 << '\n';
        } else if (used[z] and uf.same(x, a) and uf.same(x, b) and
                   g.dist(x, y) == min(g.dist(x, a) + 1 + g.dist(b, y),
                                       g.dist(x, b) + 1 + g.dist(a, y))) {
            int w = seg[g.eid(a, b)];
            if (w == INF) {
                say("2");
                cout << -1 << '\n';
            } else {
                say("3");
                auto [a, b] = es[w];
                if (g.dist(x, a) + 1 + g.dist(b, y) >
                    g.dist(x, b) + 1 + g.dist(a, y)) {
                    swap(a, b);
                }
                cout << wdist(x, a) + mint(2).pow(w+1) + wdist(b, y) << '\n';
            }
        } else {
            say("4");
            cout << wdist(x, y) << '\n';
        }
    }

}
0