結果

問題 No.718 行列のできるフィボナッチ数列道場 (1)
ユーザー snrnsidysnrnsidy
提出日時 2021-07-15 16:07:23
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 3,620 bytes
コンパイル時間 2,792 ms
コンパイル使用メモリ 219,540 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-07-04 16:27:12
合計ジャッジ時間 3,504 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 2 ms
5,376 KB
testcase_13 AC 2 ms
5,376 KB
testcase_14 AC 2 ms
5,376 KB
testcase_15 AC 2 ms
5,376 KB
testcase_16 AC 2 ms
5,376 KB
testcase_17 AC 2 ms
5,376 KB
testcase_18 AC 2 ms
5,376 KB
testcase_19 AC 2 ms
5,376 KB
testcase_20 AC 2 ms
5,376 KB
testcase_21 AC 2 ms
5,376 KB
testcase_22 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function 'std::vector<int> berlekamp_massey(std::vector<int>)':
main.cpp:30:44: warning: 'ld' may be used uninitialized [-Wmaybe-uninitialized]
   30 |                 lint k = -(x[i] - t) * ipow(ld, mod - 2) % mod;
      |                                        ~~~~^~~~~~~~~~~~~
main.cpp:17:17: note: 'ld' was declared here
   17 |         int lf, ld;
      |                 ^~
main.cpp:31:32: warning: 'lf' may be used uninitialized [-Wmaybe-uninitialized]
   31 |                 vector<int> c(i-lf-1);
      |                               ~^~~
main.cpp:17:13: note: 'lf' was declared here
   17 |         int lf, ld;
      |             ^~

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;

const int mod = 1e9 + 7;
using lint = long long;
lint ipow(lint x, lint p){
	lint ret = 1, piv = x;
	while(p){
		if(p & 1) ret = ret * piv % mod;
		piv = piv * piv % mod;
		p >>= 1;
	}
	return ret;
}
vector<int> berlekamp_massey(vector<int> x){
	vector<int> ls, cur;
	int lf, ld;
	for(int i=0; i<x.size(); i++){
		lint t = 0;
		for(int j=0; j<cur.size(); j++){
			t = (t + 1ll * x[i-j-1] * cur[j]) % mod;
		}
		if((t - x[i]) % mod == 0) continue;
		if(cur.empty()){
			cur.resize(i+1);
			lf = i;
			ld = (t - x[i]) % mod;
			continue;
		}
		lint k = -(x[i] - t) * ipow(ld, mod - 2) % mod;
		vector<int> c(i-lf-1);
		c.push_back(k);
		for(auto &j : ls) c.push_back(-j * k % mod);
		if(c.size() < cur.size()) c.resize(cur.size());
		for(int j=0; j<cur.size(); j++){
			c[j] = (c[j] + cur[j]) % mod;
		}
		if(i-lf+(int)ls.size()>=(int)cur.size()){
			tie(ls, lf, ld) = make_tuple(cur, i, (t - x[i]) % mod);
		}
		cur = c;
	}
	for(auto &i : cur) i = (i % mod + mod) % mod;
	return cur;
}
int get_nth(vector<int> rec, vector<int> dp, lint n){
	int m = rec.size();
	vector<int> s(m), t(m);
	s[0] = 1;
	if(m != 1) t[1] = 1;
	else t[0] = rec[0];
	auto mul = [&rec](vector<int> v, vector<int> w){
		int m = v.size();
		vector<int> t(2 * m);
		for(int j=0; j<m; j++){
			for(int k=0; k<m; k++){
				t[j+k] += 1ll * v[j] * w[k] % mod;
				if(t[j+k] >= mod) t[j+k] -= mod;
			}
		}
		for(int j=2*m-1; j>=m; j--){
			for(int k=1; k<=m; k++){
				t[j-k] += 1ll * t[j] * rec[k-1] % mod;
				if(t[j-k] >= mod) t[j-k] -= mod;
			}
		}
		t.resize(m);
		return t;
	};
	while(n){
		if(n & 1) s = mul(s, t);
		t = mul(t, t);
		n >>= 1;
	}
	lint ret = 0;
	for(int i=0; i<m; i++) ret += 1ll * s[i] * dp[i] % mod;
	return ret % mod;
}
int guess_nth_term(vector<int> x, lint n){
	if(n < x.size()) return x[n];
	vector<int> v = berlekamp_massey(x);
	if(v.empty()) return 0;
	return get_nth(v, x, n);
}
struct elem{int x, y, v;}; // A_(x, y) <- v, 0-based. no duplicate please..
vector<int> get_min_poly(int n, vector<elem> M){
	// smallest poly P such that A^i = sum_{j < i} {A^j \times P_j}
	vector<int> rnd1, rnd2;
	mt19937 rng(0x14004);
	auto randint = [&rng](int lb, int ub){
		return uniform_int_distribution<int>(lb, ub)(rng);
	};
	for(int i=0; i<n; i++){
		rnd1.push_back(randint(1, mod - 1));
		rnd2.push_back(randint(1, mod - 1));
	}
	vector<int> gobs;
	for(int i=0; i<2*n+2; i++){
		int tmp = 0;
		for(int j=0; j<n; j++){
			tmp += 1ll * rnd2[j] * rnd1[j] % mod;
			if(tmp >= mod) tmp -= mod;
		}
		gobs.push_back(tmp);
		vector<int> nxt(n);
		for(auto &i : M){
			nxt[i.x] += 1ll * i.v * rnd1[i.y] % mod;
			if(nxt[i.x] >= mod) nxt[i.x] -= mod;
		}
		rnd1 = nxt;
	}
	auto sol = berlekamp_massey(gobs);
	reverse(sol.begin(), sol.end());
	return sol;
}
lint det(int n, vector<elem> M){
	vector<int> rnd;
	mt19937 rng(0x14004);
	auto randint = [&rng](int lb, int ub){
		return uniform_int_distribution<int>(lb, ub)(rng);
	};
	for(int i=0; i<n; i++) rnd.push_back(randint(1, mod - 1));
	for(auto &i : M){
		i.v = 1ll * i.v * rnd[i.y] % mod;
	}
	auto sol = get_min_poly(n, M)[0];
	if(n % 2 == 0) sol = mod - sol;
	for(auto &i : rnd) sol = 1ll * sol * ipow(i, mod - 2) % mod;
	return sol;
}

long long int f[401];
int main() {
	cin.tie(0);
	ios::sync_with_stdio(false);
	
	long long int n;
	
	cin >> n;
	
	f[0] = 0;
	f[1] = 1;
	for(int i=2;i<=400;i++)
	{
		f[i] = f[i-1] + f[i-2];
		f[i]%=mod;
	}
	
	vector <int> v = {0};
	for(int i=1;i<=400;i++)
	{
		long long int val = v[i-1];
		val += (f[i]*f[i]%mod);
		val%=mod;
		v.push_back(val);
	}
	
	cout << guess_nth_term(v,n) << '\n';
	return 0;
}
0