結果

問題 No.502 階乗を計算するだけ
ユーザー hly1204hly1204
提出日時 2021-07-19 15:39:54
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 92 ms / 1,000 ms
コード長 27,628 bytes
コンパイル時間 2,282 ms
コンパイル使用メモリ 121,820 KB
実行使用メモリ 55,208 KB
最終ジャッジ日時 2024-07-17 13:17:03
合計ジャッジ時間 7,247 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 86 ms
55,076 KB
testcase_01 AC 87 ms
55,072 KB
testcase_02 AC 86 ms
55,204 KB
testcase_03 AC 87 ms
55,076 KB
testcase_04 AC 86 ms
55,072 KB
testcase_05 AC 86 ms
55,072 KB
testcase_06 AC 86 ms
55,036 KB
testcase_07 AC 86 ms
55,076 KB
testcase_08 AC 86 ms
55,204 KB
testcase_09 AC 86 ms
55,076 KB
testcase_10 AC 86 ms
55,080 KB
testcase_11 AC 87 ms
55,076 KB
testcase_12 AC 87 ms
55,080 KB
testcase_13 AC 87 ms
55,072 KB
testcase_14 AC 87 ms
55,200 KB
testcase_15 AC 87 ms
55,076 KB
testcase_16 AC 86 ms
55,076 KB
testcase_17 AC 86 ms
55,208 KB
testcase_18 AC 86 ms
55,076 KB
testcase_19 AC 87 ms
55,200 KB
testcase_20 AC 87 ms
55,076 KB
testcase_21 AC 86 ms
55,080 KB
testcase_22 AC 87 ms
55,200 KB
testcase_23 AC 86 ms
55,076 KB
testcase_24 AC 86 ms
55,200 KB
testcase_25 AC 87 ms
55,044 KB
testcase_26 AC 86 ms
55,072 KB
testcase_27 AC 87 ms
55,076 KB
testcase_28 AC 86 ms
55,076 KB
testcase_29 AC 86 ms
55,076 KB
testcase_30 AC 87 ms
55,200 KB
testcase_31 AC 87 ms
55,204 KB
testcase_32 AC 87 ms
55,208 KB
testcase_33 AC 86 ms
55,080 KB
testcase_34 AC 86 ms
55,072 KB
testcase_35 AC 86 ms
55,072 KB
testcase_36 AC 86 ms
55,080 KB
testcase_37 AC 86 ms
55,204 KB
testcase_38 AC 86 ms
55,076 KB
testcase_39 AC 86 ms
55,072 KB
testcase_40 AC 92 ms
55,200 KB
testcase_41 AC 86 ms
55,076 KB
testcase_42 AC 2 ms
5,376 KB
testcase_43 AC 2 ms
5,376 KB
testcase_44 AC 2 ms
5,376 KB
testcase_45 AC 2 ms
5,376 KB
testcase_46 AC 2 ms
5,376 KB
testcase_47 AC 2 ms
5,376 KB
testcase_48 AC 2 ms
5,376 KB
testcase_49 AC 2 ms
5,376 KB
testcase_50 AC 2 ms
5,376 KB
testcase_51 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "local_test\\test.cpp"
#include <iostream>

#line 1 "math\\formal_power_series\\arbitrary_modulo_convolution.hpp"

/**
 * @brief arbitrary modulo convolution / 任意模数卷积
 *
 */

#include <cstdint>
#include <vector>

#line 1 "modint\\Montgomery_modint.hpp"

/**
 * @brief Montgomery modint / Montgomery 取模类
 * @docs docs/modint/Montgomery_modint.md
 */

#line 11 "modint\\Montgomery_modint.hpp"
#include <type_traits>

namespace lib {

/**
 * @brief Montgomery 取模类
 * @see https://nyaannyaan.github.io/library/modint/montgomery-modint.hpp
 * @author Nyaan
 * @tparam mod 为奇数且大于 1
 */
template <std::uint32_t mod>
class MontgomeryModInt {
public:
  using i32 = std::int32_t;
  using u32 = std::uint32_t;
  using u64 = std::uint64_t;
  using m32 = MontgomeryModInt;

  using value_type = u32;

  static constexpr u32 get_mod() { return mod; }

  static constexpr u32 get_primitive_root_prime() {
    u32 tmp[32]   = {};
    int cnt       = 0;
    const u32 phi = mod - 1;
    u32 m         = phi;
    for (u32 i = 2; i * i <= m; ++i) {
      if (m % i == 0) {
        tmp[cnt++] = i;
        do { m /= i; } while (m % i == 0);
      }
    }
    if (m != 1) tmp[cnt++] = m;
    for (m32 res = 2;; res += 1) {
      bool f = true;
      for (int i = 0; i < cnt && f; ++i) f &= res.pow(phi / tmp[i]) != 1;
      if (f) return u32(res);
    }
  }

  constexpr MontgomeryModInt() = default;
  ~MontgomeryModInt()          = default;

  template <typename T, std::enable_if_t<std::is_integral_v<T>, int> = 0>
  constexpr MontgomeryModInt(T v) : v_(reduce(u64(v % i32(mod) + i32(mod)) * r2)) {}

  constexpr MontgomeryModInt(const m32 &) = default;

  constexpr u32 get() const { return norm(reduce(v_)); }

  template <typename T, std::enable_if_t<std::is_integral_v<T>, int> = 0>
  explicit constexpr operator T() const {
    return T(get());
  }

  constexpr m32 operator-() const {
    m32 res;
    res.v_ = (mod2 & -(v_ != 0)) - v_;
    return res;
  }

  constexpr m32 inv() const {
    i32 x1 = 1, x3 = 0, a = get(), b = mod;
    while (b != 0) {
      i32 q = a / b, x1_old = x1, a_old = a;
      x1 = x3, x3 = x1_old - x3 * q, a = b, b = a_old - b * q;
    }
    return m32(x1);
  }

  constexpr m32 &operator=(const m32 &) = default;

  constexpr m32 &operator+=(const m32 &rhs) {
    v_ += rhs.v_ - mod2;
    v_ += mod2 & -(v_ >> 31);
    return *this;
  }
  constexpr m32 &operator-=(const m32 &rhs) {
    v_ -= rhs.v_;
    v_ += mod2 & -(v_ >> 31);
    return *this;
  }
  constexpr m32 &operator*=(const m32 &rhs) {
    v_ = reduce(u64(v_) * rhs.v_);
    return *this;
  }
  constexpr m32 &operator/=(const m32 &rhs) { return operator*=(rhs.inv()); }
  friend constexpr m32 operator+(const m32 &lhs, const m32 &rhs) { return m32(lhs) += rhs; }
  friend constexpr m32 operator-(const m32 &lhs, const m32 &rhs) { return m32(lhs) -= rhs; }
  friend constexpr m32 operator*(const m32 &lhs, const m32 &rhs) { return m32(lhs) *= rhs; }
  friend constexpr m32 operator/(const m32 &lhs, const m32 &rhs) { return m32(lhs) /= rhs; }
  friend constexpr bool operator==(const m32 &lhs, const m32 &rhs) {
    return norm(lhs.v_) == norm(rhs.v_);
  }
  friend constexpr bool operator!=(const m32 &lhs, const m32 &rhs) {
    return norm(lhs.v_) != norm(rhs.v_);
  }

  friend std::istream &operator>>(std::istream &is, m32 &rhs) {
    i32 x;
    is >> x;
    rhs = m32(x);
    return is;
  }
  friend std::ostream &operator<<(std::ostream &os, const m32 &rhs) { return os << rhs.get(); }

  constexpr m32 pow(u64 y) const {
    m32 res(1), x(*this);
    for (; y != 0; y >>= 1, x *= x)
      if (y & 1) res *= x;
    return res;
  }

private:
  static constexpr u32 get_r() {
    u32 two = 2, iv = mod * (two - mod * mod);
    iv *= two - mod * iv;
    iv *= two - mod * iv;
    return iv * (mod * iv - two);
  }

  static constexpr u32 reduce(u64 x) { return (x + u64(u32(x) * r) * mod) >> 32; }
  static constexpr u32 norm(u32 x) { return x - (mod & -((mod - 1 - x) >> 31)); }

  u32 v_;

  static constexpr u32 r    = get_r();
  static constexpr u32 r2   = -u64(mod) % mod;
  static constexpr u32 mod2 = mod << 1;

  static_assert((mod & 1) == 1, "mod % 2 == 0\n");
  static_assert(-r * mod == 1, "???\n");
  static_assert((mod & (3U << 30)) == 0, "mod >= (1 << 30)\n");
  static_assert(mod != 1, "mod == 1\n");
};

// 别名
template <std::uint32_t mod>
using MontModInt = MontgomeryModInt<mod>;

} // namespace lib

#line 1 "math\\formal_power_series\\NTT_crt.hpp"

/**
 * @brief NTT prime crt / NTT 素数用中国剩余定理
 *
 */

#line 11 "math\\formal_power_series\\NTT_crt.hpp"

namespace lib {

template <std::uint32_t M0, std::uint32_t M1, std::uint32_t M2,
          std::enable_if_t<(M0 < M1) && ((M0 | M1 | M2) < (1U << 31)) &&
                               ((M0 & M1 & M2 & 1) == 1) && (M0 != M1) && (M0 != M2) && (M1 != M2),
                           int> = 0>
class NTTCRT3 {
public:
  using u32 = std::uint32_t;
  using u64 = std::uint64_t;

  constexpr NTTCRT3(u32 mod) : m_(mod), M0M1_mod_m_(u64(M0) * M1 % mod) {}
  ~NTTCRT3() = default;

  constexpr u32 operator()(u32 a, u32 b, u32 c) const {
    // x mod M0 = a, x mod M1 = b, x mod M2 = c
    // a + k0M0 = b + k1M1 => k0 = (b - a) / M0 (mod M1)
    // x = a + k0M0 (mod M0M1) => a + k0M0 + k01M0M1 = c + k2M2
    // => k01 = (c - (a + k0M0)) / (M0M1) (mod M2)
    // => x mod M0M1M2 = a + k0M0 + k01M0M1
    u32 k0 = b - a;
    if (int(k0) < 0) k0 += M1;
    k0      = u64(k0) * M0_inv_M1_ % M1;
    u64 d   = a + u64(k0) * M0;
    u32 k01 = c - d % M2;
    if (int(k01) < 0) k01 += M2;
    // NTT 模数都小于 (1U << 31) 所以在这里可以使用加法后再取模
    return (d + u64(k01) * M0M1_inv_M2_ % M2 * M0M1_mod_m_) % m_;
  }

  static constexpr u32 get_inv(u32 x, u32 mod) {
    u32 res = 1;
    for (u32 e = mod - 2; e != 0; e >>= 1) {
      if (e & 1) res = u64(res) * x % mod;
      x = u64(x) * x % mod;
    }
    return res;
  }

private:
  u32 m_, M0M1_mod_m_;
  static constexpr u32 M0_inv_M1_   = get_inv(M0, M1);
  static constexpr u32 M0M1_inv_M2_ = get_inv(u64(M0) * M1 % M2, M2);
};

} // namespace lib

#line 1 "math\\formal_power_series\\convolution.hpp"

/**
 * @brief convolution / 卷积
 *
 */

#line 10 "math\\formal_power_series\\convolution.hpp"

#line 1 "math\\formal_power_series\\radix_2_NTT.hpp"

/**
 * @brief radix-2 NTT / 基-2 数论变换
 * @docs docs/math/formal_power_series/radix_2_NTT.md
 */

#include <algorithm>
#include <cassert>
#line 13 "math\\formal_power_series\\radix_2_NTT.hpp"

#line 1 "traits\\modint.hpp"

/**
 * @brief modint traits / 取模类萃取
 *
 */

namespace lib {

template <typename mod_t>
struct modint_traits {
  using type = typename mod_t::value_type;
  static constexpr type get_mod() { return mod_t::get_mod(); }
  static constexpr type get_primitive_root_prime() { return mod_t::get_primitive_root_prime(); }
};

} // namespace lib

#line 15 "math\\formal_power_series\\radix_2_NTT.hpp"

namespace lib {

/**
 * @note 必须用 NTT 友好的模数!!!
 */
template <typename mod_t>
class NTT {
public:
  NTT() = delete;

  static void set_root(int len) {
    static int lim = 0;
    static constexpr mod_t g(modint_traits<mod_t>::get_primitive_root_prime());
    if (lim == 0) {
      constexpr int offset = 21;
      rt.resize(1 << offset);
      irt.resize(1 << offset);
      rt[0] = irt[0] = 1;
      mod_t g_t = g.pow(modint_traits<mod_t>::get_mod() >> (offset + 1)), ig_t = g_t.inv();
      rt[1 << (offset - 1)] = g_t, irt[1 << (offset - 1)] = ig_t;
      for (int i = offset - 2; i >= 0; --i) {
        g_t *= g_t, ig_t *= ig_t;
        rt[1 << i] = g_t, irt[1 << i] = ig_t;
      }
      lim = 1;
    }
    for (; (lim << 1) < len; lim <<= 1) {
      mod_t g = rt[lim], ig = irt[lim];
      for (int i = lim + 1, e = lim << 1; i < e; ++i) {
        rt[i]  = rt[i - lim] * g;
        irt[i] = irt[i - lim] * ig;
      }
    }
  }

  static void dft(int n, mod_t *x) {
    for (int j = 0, l = n >> 1; j != l; ++j) {
      mod_t u = x[j], v = x[j + l];
      x[j] = u + v, x[j + l] = u - v;
    }
    for (int i = n >> 1; i >= 2; i >>= 1) {
      for (int j = 0, l = i >> 1; j != l; ++j) {
        mod_t u = x[j], v = x[j + l];
        x[j] = u + v, x[j + l] = u - v;
      }
      for (int j = i, l = i >> 1, m = 1; j != n; j += i, ++m) {
        mod_t root = rt[m];
        for (int k = 0; k != l; ++k) {
          mod_t u = x[j + k], v = x[j + k + l] * root;
          x[j + k] = u + v, x[j + k + l] = u - v;
        }
      }
    }
  }

  static void idft(int n, mod_t *x) {
    for (int i = 2; i < n; i <<= 1) {
      for (int j = 0, l = i >> 1; j != l; ++j) {
        mod_t u = x[j], v = x[j + l];
        x[j] = u + v, x[j + l] = u - v;
      }
      for (int j = i, l = i >> 1, m = 1; j != n; j += i, ++m) {
        mod_t root = irt[m];
        for (int k = 0; k != l; ++k) {
          mod_t u = x[j + k], v = x[j + k + l];
          x[j + k] = u + v, x[j + k + l] = (u - v) * root;
        }
      }
    }
    mod_t iv(mod_t(n).inv());
    for (int j = 0, l = n >> 1; j != l; ++j) {
      mod_t u = x[j] * iv, v = x[j + l] * iv;
      x[j] = u + v, x[j + l] = u - v;
    }
  }

  static void even_dft(int n, mod_t *x) {
    static constexpr mod_t IT(mod_t(2).inv());
    for (int i = 0, j = 0; i != n; i += 2, ++j) x[j] = IT * (x[i] + x[i + 1]);
  }

  static void odd_dft(int n, mod_t *x) {
    static constexpr mod_t IT(mod_t(2).inv());
    for (int i = 0, j = 0; i != n; i += 2, ++j) x[j] = IT * irt[j] * (x[i] - x[i + 1]);
  }

  static void dft_doubling(int n, mod_t *x) {
    static constexpr mod_t g(modint_traits<mod_t>::get_primitive_root_prime());
    std::copy_n(x, n, x + n);
    idft(n, x + n);
    mod_t k(1), t(g.pow((modint_traits<mod_t>::get_mod() - 1) / (n << 1)));
    for (int i = 0; i != n; ++i) x[n + i] *= k, k *= t;
    dft(n, x + n);
  }

private:
  static inline std::vector<mod_t> rt, irt;
};

std::uint32_t get_ntt_len(std::uint32_t n) {
  --n;
  n |= n >> 1;
  n |= n >> 2;
  n |= n >> 4;
  n |= n >> 8;
  return (n | n >> 16) + 1;
}

/**
 * @brief 接收一个多项式,返回二进制翻转后的 DFT 序列,即 x(1), x(-1) 等,
 *        对于下标 i 和 i^1 必然是两个互为相反数的点值
 *
 * @tparam mod_t
 * @param n
 * @param x
 */
template <typename mod_t>
void dft(int n, mod_t *x) {
  NTT<mod_t>::set_root(n);
  NTT<mod_t>::dft(n, x);
}

/**
 * @brief 接收二进制翻转后的 DFT 序列,返回多项式序列 mod (x^n - 1)
 *
 * @tparam mod_t
 * @param n
 * @param x
 */
template <typename mod_t>
void idft(int n, mod_t *x) {
  NTT<mod_t>::set_root(n);
  NTT<mod_t>::idft(n, x);
}

template <typename mod_t>
void dft(std::vector<mod_t> &x) {
  NTT<mod_t>::set_root(x.size());
  NTT<mod_t>::dft(x.size(), x.data());
}

template <typename mod_t>
void idft(std::vector<mod_t> &x) {
  NTT<mod_t>::set_root(x.size());
  NTT<mod_t>::idft(x.size(), x.data());
}

} // namespace lib

#line 12 "math\\formal_power_series\\convolution.hpp"

namespace lib {

/**
 * @brief NTT 模数卷积
 * @tparam mod_t NTT 友好的模数类
 */
template <typename mod_t>
std::vector<mod_t> convolve(const std::vector<mod_t> &x, const std::vector<mod_t> &y) {
  int n = x.size(), m = y.size();
  if (std::min(n, m) <= 32) {
    std::vector<mod_t> res(n + m - 1, mod_t(0));
    for (int i = 0; i < n; ++i)
      for (int j = 0; j < m; ++j) res[i + j] += x[i] * y[j];
    return res;
  }
  int len = get_ntt_len(n + m - 1);
  std::vector<mod_t> res(len);
  std::copy_n(x.begin(), n, res.begin());
  std::fill(res.begin() + n, res.end(), mod_t(0));
  dft(res);
  if (&x == &y) {
    for (int i = 0; i < len; ++i) res[i] *= res[i];
  } else {
    std::vector<mod_t> y_tmp(len);
    std::copy_n(y.begin(), m, y_tmp.begin());
    std::fill(y_tmp.begin() + m, y_tmp.end(), mod_t(0));
    dft(y_tmp);
    for (int i = 0; i < len; ++i) res[i] *= y_tmp[i];
  }
  idft(res);
  res.resize(n + m - 1);
  return res;
}

} // namespace lib

#line 15 "math\\formal_power_series\\arbitrary_modulo_convolution.hpp"

namespace lib {

/**
 * @brief 任意模数卷积
 * @note 只适用于模数为 32 位
 */
template <typename Int, typename ModType>
std::enable_if_t<std::is_integral_v<ModType> && (sizeof(ModType) <= 4) && std::is_integral_v<Int>,
                 std::vector<Int>>
convolve_mod(const std::vector<Int> &x, const std::vector<Int> &y, ModType mod) {
  using u32               = std::uint32_t;
  static constexpr u32 M0 = 880803841, M1 = 897581057, M2 = 998244353;
  NTTCRT3<M0, M1, M2> crt(mod);
  using mod_t0 = MontModInt<M0>;
  using mod_t1 = MontModInt<M1>;
  using mod_t2 = MontModInt<M2>;
  auto res0 =
      convolve(std::vector<mod_t0>(x.begin(), x.end()), std::vector<mod_t0>(y.begin(), y.end()));
  auto res1 =
      convolve(std::vector<mod_t1>(x.begin(), x.end()), std::vector<mod_t1>(y.begin(), y.end()));
  auto res2 =
      convolve(std::vector<mod_t2>(x.begin(), x.end()), std::vector<mod_t2>(y.begin(), y.end()));
  int n = res0.size();
  std::vector<Int> res;
  res.reserve(n);
  for (int i = 0; i < n; ++i) res.emplace_back(crt(u32(res0[i]), u32(res1[i]), u32(res2[i])));
  return res;
}

} // namespace lib

#line 1 "math\\modulo\\factorial_modulo_prime.hpp"

/**
 * @brief factorial modulo prime / 阶乘模素数
 * @docs docs/math/modulo/factorial_modulo_prime.md
 */

#line 11 "math\\modulo\\factorial_modulo_prime.hpp"
#include <functional>
#include <iterator>
#include <numeric>
#line 15 "math\\modulo\\factorial_modulo_prime.hpp"

#line 1 "math\\formal_power_series\\sample_points_shift.hpp"

/**
 * @brief sample points shift / 样本点平移
 * @docs docs/math/formal_power_series/sample_points_shift.md
 */

#line 12 "math\\formal_power_series\\sample_points_shift.hpp"
#include <utility>
#line 14 "math\\formal_power_series\\sample_points_shift.hpp"

#line 1 "math\\formal_power_series\\NTT_binomial.hpp"

/**
 * @brief NTT prime binomial / NTT 素数用二项式系数
 *
 */

#line 10 "math\\formal_power_series\\NTT_binomial.hpp"

namespace lib {

template <typename mod_t>
class NTTBinomial {
public:
  NTTBinomial(int lim = 0) {
    if (fac_.empty()) {
      fac_.emplace_back(1);
      ifac_.emplace_back(1);
    }
    init(lim);
  }
  ~NTTBinomial() = default;

  /**
   * @brief 预处理 [0, n) 的阶乘和其逆元
   */
  static void init(int n) {
    if (int(fac_.size()) < n) {
      int old_size = fac_.size();
      fac_.resize(n);
      ifac_.resize(n);
      for (int i = old_size; i < n; ++i) fac_[i] = fac_[i - 1] * mod_t(i);
      ifac_.back() = mod_t(1) / fac_.back();
      for (int i = n - 2; i >= old_size; --i) ifac_[i] = ifac_[i + 1] * mod_t(i + 1);
    }
  }

  static void reset() {
    fac_.clear();
    ifac_.clear();
  }

  mod_t fac_unsafe(int n) const { return fac_[n]; }
  mod_t ifac_unsafe(int n) const { return ifac_[n]; }
  mod_t inv_unsafe(int n) const { return ifac_[n] * fac_[n - 1]; }
  mod_t choose_unsafe(int n, int k) const {
    // 返回 binom{n}{k} 注意上指标可以为负数但这里并未实现!
    return n >= k ? fac_[n] * ifac_[k] * ifac_[n - k] : mod_t(0);
  }

private:
  static inline std::vector<mod_t> fac_, ifac_;
};

} // namespace lib

#line 1 "math\\formal_power_series\\falling_factorial_polynomial_multiplication.hpp"

/**
 * @brief falling factorial polynomial multiplication / 下降幂多项式乘法
 * @docs docs/math/formal_power_series/falling_factorial_polynomial_multiplication.md
 */

#line 13 "math\\formal_power_series\\falling_factorial_polynomial_multiplication.hpp"

#line 16 "math\\formal_power_series\\falling_factorial_polynomial_multiplication.hpp"

namespace lib {

/**
 * @brief 样本点转换为下降幂多项式
 *
 * @tparam mod_t NTT 友好的模数
 * @param pts f(0), f(1), …, f(n-1)
 * @return std::vector<mod_t> 下降幂多项式系数
 */
template <typename mod_t>
std::vector<mod_t> sample_points_to_FFP(const std::vector<mod_t> &pts) {
  int n = pts.size();
  NTTBinomial<mod_t> bi(n);
  std::vector<mod_t> emx(n), pts_egf(n);
  for (int i = 0; i < n; ++i) {
    pts_egf[i] = pts[i] * (emx[i] = bi.ifac_unsafe(i));
    if (i & 1) emx[i] = -emx[i];
  }
  pts_egf = std::move(convolve(emx, pts_egf));
  pts_egf.resize(n);
  return pts_egf;
}

/**
 * @brief 下降幂多项式转换为样本点
 *
 * @tparam mod_t NTT 友好的模数
 * @param n
 * @param ffp 下降幂多项式
 * @return std::vector<mod_t> f(0), f(1), …, f(n-1)
 */
template <typename mod_t>
std::vector<mod_t> FFP_to_sample_points(int n, const std::vector<mod_t> &ffp) {
  NTTBinomial<mod_t> bi(n);
  std::vector<mod_t> ex(n);
  for (int i = 0; i < n; ++i) ex[i] = bi.ifac_unsafe(i);
  if (ffp.size() > n) {
    ex = std::move(convolve(ex, std::vector<mod_t>(ffp.begin(), ffp.begin() + n)));
  } else {
    ex = std::move(convolve(ex, ffp));
  }
  for (int i = 0; i < n; ++i) ex[i] *= bi.fac_unsafe(i);
  ex.resize(n);
  return ex;
}

/**
 * @brief 下降幂多项式乘法
 * @note 这里若展开写可以节省一次 DFT
 */
template <typename mod_t>
std::vector<mod_t> convolve_FFP(const std::vector<mod_t> &lhs, const std::vector<mod_t> &rhs) {
  int d = lhs.size() + rhs.size() - 1;
  std::vector<mod_t> lhs_pts(FFP_to_sample_points(d, lhs)), rhs_pts(FFP_to_sample_points(d, rhs));
  for (int i = 0; i < d; ++i) lhs_pts[i] *= rhs_pts[i];
  return sample_points_to_FFP(lhs_pts);
}

/**
 * @brief 下降幂多项式平移
 */
template <typename mod_t>
std::vector<mod_t> shift_FFP(const std::vector<mod_t> &ffp, mod_t c) {
  int n = ffp.size();
  NTTBinomial<mod_t> bi(n);
  std::vector<mod_t> A(ffp), B(n);
  mod_t c_i(1);
  for (int i = 0; i < n; ++i)
    A[i] *= bi.fac_unsafe(i), B[i] = c_i * bi.ifac_unsafe(i), c_i *= c - mod_t(i);
  std::reverse(A.begin(), A.end());
  A = std::move(convolve(A, B));
  A.resize(n);
  std::reverse(A.begin(), A.end());
  for (int i = 0; i < n; ++i) A[i] *= bi.ifac_unsafe(i);
  return A;
}

} // namespace lib

#line 18 "math\\formal_power_series\\sample_points_shift.hpp"

namespace lib {

/**
 * @brief 样本点平移(通过下降幂多项式平移)
 *
 * @tparam mod_t NTT 友好的模数
 * @param n 返回值的点数,需大于零
 * @param pts f(0), f(1), …, f(k-1) 确定一个唯一多项式 mod x^{\underline{k}}
 * @param m 平移距离 f(x) => f(x+m)
 * @return std::vector<mod_t> f(m), f(m+1), …, f(m+n-1)
 */
template <typename mod_t>
std::vector<mod_t> shift_sample_points_via_FFP(int n, const std::vector<mod_t> &pts, mod_t m) {
  return FFP_to_sample_points(n, shift_FFP(sample_points_to_FFP(pts), m));
}

template <typename mod_t>
std::vector<mod_t> shift_sample_points_via_FFP(const std::vector<mod_t> &pts, mod_t m) {
  return shift_sample_points_via_FFP(pts.size(), pts, m);
}

/**
 * @brief 样本点平移(通过拉格朗日插值公式)
 * @note 不安全的算法
 * @tparam mod_t NTT 友好的模数
 * @param n 返回值的点数,需大于零
 * @param pts f(0), f(1), …, f(k-1) 确定一个唯一多项式 mod x^{\underline{k}}
 * @param m 平移距离 f(x) => f(x+m)
 * @return std::vector<mod_t> f(m), f(m+1), …, f(m+n-1)
 */
template <typename mod_t>
std::vector<mod_t> shift_sample_points_unsafe(int n, const std::vector<mod_t> &pts, mod_t m) {
  int s = pts.size(), deg_A = s - 1;
  NTTBinomial<mod_t> bi(s);
  std::vector<mod_t> A(s), B(deg_A + n), p_sum(deg_A + n);
  for (int i = 0; i < s; ++i) {
    A[i] = pts[i] * bi.ifac_unsafe(i) * bi.ifac_unsafe(deg_A - i);
    if ((deg_A - i) & 1) A[i] = -A[i];
  }
  const mod_t ZERO(0);
  for (int i = 0; i < deg_A + n; ++i) {
    B[i] = m + mod_t(i - deg_A);
    assert(B[i] != ZERO);
  }
  std::partial_sum(B.begin(), B.end(), p_sum.begin(), std::multiplies<>());
  mod_t p_inv = mod_t(1) / p_sum.back();
  for (int i = deg_A + n - 1; i > 0; --i) {
    mod_t t = p_inv * B[i];
    B[i]    = p_inv * p_sum[i - 1];
    p_inv   = t;
  }
  B[0]    = p_inv;
  p_sum   = B;
  int len = get_ntt_len(s + s - 1 + n - (s < 2 ? 0 : deg_A - 1) - 1);
  p_sum.resize(len, ZERO);
  A.resize(len, ZERO);
  {
    using u32               = std::uint32_t;
    static constexpr u32 M0 = 880803841, M1 = 897581057, M2 = 998244353;
    NTTCRT3<M0, M1, M2> crt(mod_t::get_mod());
    using mod_t0 = MontModInt<M0>;
    using mod_t1 = MontModInt<M1>;
    using mod_t2 = MontModInt<M2>;
    std::vector<mod_t0> A0(len), B0(len);
    std::vector<mod_t1> A1(len), B1(len);
    std::vector<mod_t2> A2(len), B2(len);
    for (int i = 0; i < len; ++i) {
      u32 vvv = u32(A[i]);
      A0[i]   = vvv;
      A1[i]   = vvv;
      A2[i]   = vvv;
      vvv     = u32(p_sum[i]);
      B0[i]   = vvv;
      B1[i]   = vvv;
      B2[i]   = vvv;
    }
    dft(A0), dft(B0), dft(A1), dft(B1), dft(A2), dft(B2);
    for (int i = 0; i < len; ++i) {
      A0[i] *= B0[i];
      A1[i] *= B1[i];
      A2[i] *= B2[i];
    }
    idft(A0), idft(A1), idft(A2);
    A.clear();
    for (int i = 0; i < len; ++i) A.emplace_back(crt(u32(A0[i]), u32(A1[i]), u32(A2[i])));
  }
  mod_t coeff(m);
  for (int i = 1; i < s; ++i) coeff *= m - mod_t(i);
  for (int i = 0; i < n; ++i) A[i] = A[deg_A + i] * coeff, coeff *= (m + mod_t(i + 1)) * B[i];
  A.resize(n);
  return A;
}

template <typename mod_t>
std::vector<mod_t> shift_sample_points_unsafe(const std::vector<mod_t> &pts, mod_t m) {
  return shift_sample_points_unsafe(pts.size(), pts, m);
}

} // namespace lib

#line 18 "math\\modulo\\factorial_modulo_prime.hpp"

namespace lib {

/**
 * @brief NTT 友好模数的阶乘计算
 *
 * @tparam mod_t NTT 友好的模数
 */
template <typename mod_t>
class NTTPrimeFactorial {
public:
  using u32 = std::uint32_t;
  using u64 = std::uint64_t;
  NTTPrimeFactorial() : v_(1) {
    while (v_ * v_ < modint_traits<mod_t>::get_mod()) v_ <<= 1;
    mod_t iv   = mod_t(1) / mod_t(v_);
    fac_table_ = std::vector<mod_t>{mod_t(1), mod_t(v_ + 1)};
    fac_table_.reserve(v_ + 1);
    for (u64 d = 1; d != v_; d <<= 1) {
      std::vector<mod_t> g0(shift_sample_points_unsafe(d, fac_table_, mod_t(d + 1)));
      std::vector<mod_t> g1(shift_sample_points_unsafe(d << 1 | 1, fac_table_, mod_t(d) * iv));
      std::copy(g0.begin(), g0.end(), std::back_inserter(fac_table_));
      for (int i = 0; i <= (d << 1); ++i) fac_table_[i] *= g1[i];
    }
    std::partial_sum(fac_table_.begin(), fac_table_.end(), fac_table_.begin(), std::multiplies<>());
  }
  ~NTTPrimeFactorial() = default;

  mod_t fac(mod_t n) const {
    mod_t res(1);
    u64 pass = u64(n) / v_;
    if (pass != 0) res *= fac_table_[pass - 1];
    for (mod_t ONE(1), mpass(pass * v_); mpass != n;) res *= (mpass += ONE);
    return res;
  }

private:
  u64 v_;
  std::vector<mod_t> fac_table_;
};

} // namespace lib

#line 1 "modint\\runtime_long_Montgomery_modint.hpp"

/**
 * @brief runtime long Montgomery modint / 运行时长整型 Montgomery 取模类
 *
 */

#line 12 "modint\\runtime_long_Montgomery_modint.hpp"
#include <tuple>
#line 14 "modint\\runtime_long_Montgomery_modint.hpp"

#ifdef _MSC_VER
  #include <intrin.h>
#endif

namespace lib {

/**
 * @brief 运行时长整型 Montgomery 取模类
 * @see https://nyaannyaan.github.io/library/modint/montgomery-modint.hpp
 * @author Nyaan
 * @note 约定不使用模板中 int 为负数的对象
 */
template <int>
class RuntimeLongMontgomeryModInt {
public:
  using u32 = std::uint32_t;
  using i64 = std::int64_t;
  using u64 = std::uint64_t;
  using m64 = RuntimeLongMontgomeryModInt;

  using value_type = u64;

  static u64 get_mod() { return mod; }

  static bool set_mod(u64 m) {
    if ((m & 1) == 0 || m == 1 || (m & (1ULL << 63)) != 0) return false;
    mod = m;
    r   = get_r();
    r2  = get_r2();
    return true;
  }

  RuntimeLongMontgomeryModInt()  = default;
  ~RuntimeLongMontgomeryModInt() = default;

  template <typename T, std::enable_if_t<std::is_integral_v<T>, int> = 0>
  RuntimeLongMontgomeryModInt(T v) : v_(reduce(mul(norm(v % i64(mod)), r2))) {}

  RuntimeLongMontgomeryModInt(const m64 &) = default;

  u64 get() const { return reduce({0, v_}); }

  template <typename T, std::enable_if_t<std::is_integral_v<T>, int> = 0>
  explicit operator T() const {
    return T(get());
  }

  m64 operator-() const {
    m64 res;
    res.v_ = (mod & -(v_ != 0)) - v_;
    return res;
  }

  m64 inv() const {
    i64 x1 = 1, x3 = 0, a = get(), b = mod;
    while (b != 0) {
      i64 q = a / b, x1_old = x1, a_old = a;
      x1 = x3, x3 = x1_old - x3 * q, a = b, b = a_old - b * q;
    }
    return m64(x1);
  }

  m64 &operator=(const m64 &) = default;

  m64 &operator+=(const m64 &rhs) {
    v_ += rhs.v_ - mod;
    v_ += mod & -(v_ >> 63);
    return *this;
  }
  m64 &operator-=(const m64 &rhs) {
    v_ -= rhs.v_;
    v_ += mod & -(v_ >> 63);
    return *this;
  }
  m64 &operator*=(const m64 &rhs) {
    v_ = reduce(mul(v_, rhs.v_));
    return *this;
  }
  m64 &operator/=(const m64 &rhs) { return operator*=(rhs.inv()); }
  friend m64 operator+(const m64 &lhs, const m64 &rhs) { return m64(lhs) += rhs; }
  friend m64 operator-(const m64 &lhs, const m64 &rhs) { return m64(lhs) -= rhs; }
  friend m64 operator*(const m64 &lhs, const m64 &rhs) { return m64(lhs) *= rhs; }
  friend m64 operator/(const m64 &lhs, const m64 &rhs) { return m64(lhs) /= rhs; }
  friend bool operator==(const m64 &lhs, const m64 &rhs) { return lhs.v_ == rhs.v_; }
  friend bool operator!=(const m64 &lhs, const m64 &rhs) { return lhs.v_ != rhs.v_; }

  friend std::istream &operator>>(std::istream &is, m64 &rhs) {
    i64 x;
    is >> x;
    rhs = m64(x);
    return is;
  }
  friend std::ostream &operator<<(std::ostream &os, const m64 &rhs) { return os << rhs.get(); }

  m64 pow(u64 y) const {
    m64 res(1), x(*this);
    for (; y != 0; y >>= 1, x *= x)
      if (y & 1) res *= x;
    return res;
  }

private:
  static std::pair<u64, u64> mul(u64 x, u64 y) {
#ifdef __GNUC__
    unsigned __int128 res = (unsigned __int128)x * y;
    return {u64(res >> 64), u64(res)};
#elif defined(_MSC_VER)
    u64 h, l = _umul128(x, y, &h);
    return {h, l};
#else
    u64 a = x >> 32, b = u32(x), c = y >> 32, d = u32(y), ad = a * d, bc = b * c;
    return {a * c + (ad >> 32) + (bc >> 32) +
                (((ad & ~UINT32_C(0)) + (bc & ~UINT32_C(0)) + (b * d >> 32)) >> 32),
            x * y};
#endif
  }

  static u64 mulh(u64 x, u64 y) {
#ifdef __GNUC__
    return u64((unsigned __int128)x * y >> 64);
#elif defined(_MSC_VER)
    return __umulh(x, y);
#else
    u64 a = x >> 32, b = u32(x), c = y >> 32, d = u32(y), ad = a * d, bc = b * c;
    return a * c + (ad >> 32) + (bc >> 32) +
           (((ad & ~UINT32_C(0)) + (bc & ~UINT32_C(0)) + (b * d >> 32)) >> 32);
#endif
  }

  static u64 get_r() {
    u64 two = 2, iv = mod * (two - mod * mod);
    iv *= two - mod * iv;
    iv *= two - mod * iv;
    iv *= two - mod * iv;
    return iv * (two - mod * iv);
  }

  static u64 get_r2() {
    u64 iv = -u64(mod) % mod;
    for (int i = 0; i != 64; ++i)
      if ((iv <<= 1) >= mod) iv -= mod;
    return iv;
  }

  static u64 reduce(const std::pair<u64, u64> &x) {
    u64 res = x.first - mulh(x.second * r, mod);
    return res + (mod & -(res >> 63));
  }

  static u64 norm(i64 x) { return x + (mod & -(x < 0)); }

  u64 v_;

  static inline u64 mod, r, r2;
};

template <int id>
using RuntimeLongMontModInt = RuntimeLongMontgomeryModInt<id>;

} // namespace lib

#line 7 "local_test\\test.cpp"

int main() {
#ifdef LOCAL
  std::freopen("in", "r", stdin), std::freopen("out", "w", stdout);
#endif
  std::ios::sync_with_stdio(false);
  std::cin.tie(0);
  using mint = lib::MontModInt<1000000007>;
  long long n;
  std::cin >> n;
  if (n >= 1000000007) std::cout << "0";
  else std::cout << lib::NTTPrimeFactorial<mint>().fac(mint(n));
  return 0;
}
0