結果
問題 | No.1576 織姫と彦星 |
ユーザー | jutama |
提出日時 | 2021-07-20 21:21:13 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 52 ms / 2,000 ms |
コード長 | 10,691 bytes |
コンパイル時間 | 3,658 ms |
コンパイル使用メモリ | 194,356 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-07-17 13:48:41 |
合計ジャッジ時間 | 6,275 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,944 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 2 ms
6,944 KB |
testcase_07 | AC | 13 ms
6,944 KB |
testcase_08 | AC | 9 ms
6,944 KB |
testcase_09 | AC | 2 ms
6,940 KB |
testcase_10 | AC | 34 ms
6,940 KB |
testcase_11 | AC | 2 ms
6,940 KB |
testcase_12 | AC | 22 ms
6,944 KB |
testcase_13 | AC | 42 ms
6,940 KB |
testcase_14 | AC | 28 ms
6,944 KB |
testcase_15 | AC | 28 ms
6,940 KB |
testcase_16 | AC | 39 ms
6,940 KB |
testcase_17 | AC | 27 ms
6,940 KB |
testcase_18 | AC | 6 ms
6,944 KB |
testcase_19 | AC | 9 ms
6,940 KB |
testcase_20 | AC | 28 ms
6,940 KB |
testcase_21 | AC | 26 ms
6,944 KB |
testcase_22 | AC | 33 ms
6,944 KB |
testcase_23 | AC | 4 ms
6,940 KB |
testcase_24 | AC | 5 ms
6,944 KB |
testcase_25 | AC | 37 ms
6,940 KB |
testcase_26 | AC | 11 ms
6,940 KB |
testcase_27 | AC | 2 ms
6,944 KB |
testcase_28 | AC | 34 ms
6,940 KB |
testcase_29 | AC | 11 ms
6,940 KB |
testcase_30 | AC | 2 ms
6,940 KB |
testcase_31 | AC | 13 ms
6,944 KB |
testcase_32 | AC | 26 ms
6,940 KB |
testcase_33 | AC | 48 ms
6,940 KB |
testcase_34 | AC | 2 ms
6,944 KB |
testcase_35 | AC | 16 ms
6,944 KB |
testcase_36 | AC | 4 ms
6,944 KB |
testcase_37 | AC | 52 ms
6,940 KB |
testcase_38 | AC | 34 ms
6,940 KB |
testcase_39 | AC | 20 ms
6,944 KB |
testcase_40 | AC | 14 ms
6,940 KB |
testcase_41 | AC | 17 ms
6,944 KB |
testcase_42 | AC | 2 ms
6,944 KB |
testcase_43 | AC | 6 ms
6,940 KB |
testcase_44 | AC | 46 ms
6,940 KB |
testcase_45 | AC | 13 ms
6,940 KB |
testcase_46 | AC | 31 ms
6,944 KB |
testcase_47 | AC | 7 ms
6,940 KB |
testcase_48 | AC | 18 ms
6,940 KB |
testcase_49 | AC | 17 ms
6,944 KB |
testcase_50 | AC | 2 ms
6,940 KB |
testcase_51 | AC | 4 ms
6,940 KB |
testcase_52 | AC | 49 ms
6,944 KB |
testcase_53 | AC | 27 ms
6,940 KB |
testcase_54 | AC | 36 ms
6,940 KB |
testcase_55 | AC | 48 ms
6,940 KB |
testcase_56 | AC | 51 ms
6,940 KB |
testcase_57 | AC | 2 ms
6,940 KB |
testcase_58 | AC | 11 ms
6,940 KB |
ソースコード
#include <atcoder/all> #include <bitset> #include <fstream> #include <functional> #include <iostream> #include <iomanip> #include <limits> #include <map> #include <math.h> #include <queue> #include <set> #include <sstream> #include <stack> #include <stdio.h> #include <stdlib.h> #include <unordered_map> #include <unordered_set> #include <vector> using namespace std; using namespace atcoder; typedef long long ll; typedef long double ld; typedef std::pair<int, int> pii; typedef std::pair<int, ll> pil; typedef std::pair<ll, int> pli; typedef std::pair<ll, ll> pll; typedef std::pair<int, ld> pid; typedef std::pair<int, std::string> pis; typedef std::pair<ll, std::string> pls; typedef std::vector<bool> vb; typedef std::vector<vb> vvb; typedef std::vector<int> vi; typedef std::vector<vi> vvi; typedef std::vector<vvi> vvvi; typedef std::vector<vvvi> vvvvi; typedef std::vector<ll> vl; typedef std::vector<vl> vvl; typedef std::vector<vvl> vvvl; typedef std::vector<vvvl> vvvvl; typedef std::vector<ld> vd; typedef std::vector<vd> vvd; typedef std::vector<std::string> vs; #define rep(i,n) for(auto i=0; i<n; ++i) #define repm(i,s,n) for(auto i=s; i<n; ++i) #define repd(i,n) for(auto i=n-1; i>=0; --i) #define repdm(i,e,n) for(auto i=n-1; i>=e; --i) #define all(a) (a).begin(), (a).end() #define rall(a) (a).rbegin(), (a).rend() template <class T> inline bool chmax(T& a, T b, int eq = 0) { if (a < b || (a == b && eq)) { a = b; return 1; } return 0; } template <class T> inline bool chmin(T& a, T b, int eq = 0) { if (a > b || (a == b && eq)) { a = b; return 1; } return 0; } template <class mint, internal::is_modint_t<mint>* = nullptr> constexpr istream& operator>>(istream& is, mint& x) noexcept {long long v = 0; std::cin >> v; x = v; return is;} template <class mint, internal::is_modint_t<mint>* = nullptr> constexpr ostream& operator<<(ostream& os, const mint& x) noexcept {os << x.val(); return os;} inline void _n() { std::cout << std::endl; } template <class T> inline void _(const T a) { std::cout << a; } template <class T> inline void _l(const T a) { _(a); _n(); } template <class T> inline void _s(const T a) { _(a); _(' '); } template <class T> inline void _v(const std::vector<T> v) { for(auto a : v) _(a); } template <class T> inline void _vl(const std::vector<T> v) { for(auto a : v) _l(a); } template <class T> inline void _vs(const std::vector<T> v) { for(auto a : v) _s(a); _n(); } template <class T> inline void _vvl(const std::vector<std::vector<T>> v) { for(auto a : v) { _v(a); _n(); } } template <class T> inline void _vvs(const std::vector<std::vector<T>> v) { for(auto a : v) { _vs(a); } } inline void ynl(const bool b) {_l(b ? "yes" : "no");} inline void yns(const bool b) {_l(b ? "Yes" : "No");} inline void ynu(const bool b) {_l(b ? "YES" : "NO");} constexpr int INF = numeric_limits<int>::max() >> 1; constexpr long long INF_LL = numeric_limits<long long>::max() >> 1LL; constexpr long long MOD1 = 1000000007; constexpr long long MOD9 = 998244353; using mint1 = atcoder::modint1000000007; using mint9 = atcoder::modint998244353; //* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ *// template <class Cost> struct graph_l { public : graph_l(int n) : _n(n), _graph(n), _dist(n, 0) {} void add (int from, int to, Cost cost){ assert(0 <= from && from < _n); assert(0 <= to && to < _n); _graph[from].push_back(_edge{(unsigned int)from, (unsigned int)to, cost}); } void add_bi (int from, int to, Cost cost){ add(from, to, cost); add(to, from, cost); } std::vector<int> get_edges(int v) { std::vector<int> edges; for (auto edge : _graph[v]) { edges.push_back(edge.to); } return edges; } bool is_Reachable (int v) { assert(0 <= v && v < _n); return _dist[v] < DIST_INF; } Cost get_dist (int v) { assert(0 <= v && v < _n); return _dist[v]; } int get_lca(int u, int v) { assert(0 <= u && u < _n); assert(0 <= v && v < _n); if (_depth[u] < _depth[v]) swap(u, v); int K = (int)_parent.size(); for (int k = 0; k < K; k++) { if ((_depth[u] - _depth[v]) >> k & 1) { u = _parent[k][u]; } } if (u == v) return u; for (int k = K - 1; k >= 0; k--) { if (_parent[k][u] != _parent[k][v]) { u = _parent[k][u]; v = _parent[k][v]; } } return _parent[0][u]; } Cost get_dist_with_lca (int u, int v) { assert(0 <= u && u < _n); assert(0 <= v && v < _n); return _dist[u] + _dist[v] - 2 * _dist[get_lca(u, v)]; } std::vector<int> get_articulation_points(int s = 0) { if(s > 0) std::sort(_aps.begin(), _aps.end()); return _aps; } std::vector<std::pair<int, int>> get_bridges(int s = 0) { if(s > 0) std::sort(_bridges.begin(), _bridges.end()); return _bridges; } void dijkstra (int s) { assert(0 <= s && s < _n); _dist.assign(_n, DIST_INF); _dist[s] = 0; auto edge_compare = [] (_edge e1, _edge e2) { if (e1.cost != e2.cost) return e1.cost > e2.cost; else if (e1.to != e2.to) return e1.to > e2.to; else return e1.from > e2.from; }; priority_queue<_edge, vector<_edge>, function<bool(_edge, _edge)>> edge_que(edge_compare); edge_que.push(_edge{(unsigned)s, (unsigned)s, 0}); // for (auto e : _graph[s]) { // edge_que.push(_edge{e.from, e.to, e.cost}); // if(_dist[e.to] > e.cost) _dist[e.to] = e.cost; // } while (!edge_que.empty()) { _edge p = edge_que.top(); edge_que.pop(); unsigned int v = p.to; if (_dist[v] < p.cost) continue; for (auto e : _graph[v]) { auto next_cost = e.cost + _dist[v]; if (_dist[e.to] <= next_cost) continue; _dist[e.to] = next_cost; edge_que.push(_edge{e.from, e.to, _dist[e.to]}); } } } bool bellman_ford (int s) { assert(0 <= s && s < _n); _dist.assign(_n, DIST_INF); _dist[s] = 0; for(int i = 0; i < _n - 1; ++i) { for(int j = 0; j < _n; ++j ){ for(auto e : _graph[j]) { if(_dist[j] == DIST_INF) continue; _dist[e.to] = min(_dist[e.to], _dist[j] + e.cost); } } } for(int j = 0; j < _n; ++j ){ for(auto e : _graph[j]) { if(_dist[j] == DIST_INF) continue; if(_dist[j] + e.cost < _dist[e.to]) return false; } } return true; } void lca(int r = 0) { assert(0 <= r && r < _n); int K = 1; while ((1 << K) < _n) K++; _dist.assign(_n, DIST_INF); _depth.assign(_n, -1); _parent.assign(K, std::vector<int>(_n, -1)); dfs_lca(r, -1, 0, 0); for (int k = 0; k + 1 < K; k++) { for (int v = 0; v < _n; v++) { if (_parent[k][v] < 0) { _parent[k+1][v] = -1; } else { _parent[k+1][v] = _parent[k][_parent[k][v]]; } } } } Cost kruskal() { std::vector<_edge> edge_vec; for (int v = 0; v < _n; ++v) { for (auto e : _graph[v]) { edge_vec.push_back(e); } } auto edge_compare = [] (_edge e1, _edge e2) { if (e1.cost != e2.cost) return e1.cost < e2.cost; else if (e1.to != e2.to) return e1.to < e2.to; else return e1.from < e2.from; }; std::sort(edge_vec.begin(), edge_vec.end(), edge_compare); Cost _cost = 0; atcoder::dsu _dsu(_n); for (auto e : edge_vec) { if (!_dsu.same(e.from, e.to)) { _dsu.merge(e.from, e.to); _cost += e.cost; } } return _dsu.groups().size() == 1 ? _cost : -1; } void lowlink() { _used.resize(_n); _ord.resize(_n); _low.resize(_n); int j = 0; for (int i = 0; i < _n; i++) { if (!_used[i]) j = dfs_lowlink(i, j, -1); } } private: void dfs_lca(unsigned int v, int p, unsigned int d, Cost c) { _parent[0][v] = p; _depth[v] = d; _dist[v] = c; for (auto e : _graph[v]) { if (e.to != p) dfs_lca(e.to, v, d + 1, c + e.cost); } } int dfs_lowlink(unsigned int i, unsigned int j, int par) { _used[i] = true; _ord[i] = j++; _low[i] = _ord[i]; bool is_aps = false; int count = 0; for (auto e : _graph[i]) { if (!_used[e.to]) { count++; j = dfs_lowlink(e.to, j, i); _low[i] = min(_low[i], _low[e.to]); if (par != -1 && _ord[i] <= _low[e.to]) is_aps = true; if (_ord[i] < _low[e.to]) _bridges.emplace_back(min(i, e.to), max(i, e.to)); } else if (e.to != par) { _low[i] = min(_low[i], _ord[e.to]); } } if (par == -1 && count >= 2) is_aps = true; if (is_aps) _aps.push_back(i); return j; } private: int _n; const Cost DIST_INF = numeric_limits<Cost>::max(); struct _edge { unsigned int from; unsigned int to; Cost cost; }; std::vector<std::vector<_edge>> _graph; std::vector<Cost> _dist; std::vector<int> _depth; std::vector<std::vector<int>> _parent; std::vector<int> _used, _ord, _low; std::vector<int> _aps; std::vector<std::pair<int, int>> _bridges; }; void solve() { auto dist = [](int a, int b) -> int { bitset<64> ab(a), bb(b); int res = 0; rep(i, 64) if(ab.test(i) != bb.test(i)) res++; return res; }; int N; cin >> N; vi S(N+2); rep(i, N+2) cin >> S[i]; graph_l<int> G(N+2); rep(i, N+2) { repm(j, i, N+2) { if(i == j) G.add(i, i, 0); else if(dist(S[i], S[j]) <= 1) G.add_bi(i, j, 1); } } G.dijkstra(0); int ans = G.is_Reachable(1) ? G.get_dist(1) : 0; _l(--ans); } //* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ *// int main() { std::ifstream in("input.txt"); std::cin.rdbuf(in.rdbuf()); std::cin.tie(0); std::cout.tie(0); std::ios::sync_with_stdio(false); solve(); return 0; }