結果

問題 No.1553 Lovely City
ユーザー yuruhiya
提出日時 2021-07-21 18:47:07
言語 Crystal
(1.14.0)
結果
AC  
実行時間 600 ms / 2,000 ms
コード長 14,986 bytes
コンパイル時間 13,632 ms
コンパイル使用メモリ 302,400 KB
実行使用メモリ 98,864 KB
最終ジャッジ日時 2024-07-17 14:14:57
合計ジャッジ時間 26,838 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 26
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

# require "/scanner"
# ### Specifications
#
# ```plain
# Inside input macro | Expanded code
# ----------------------------------------------+---------------------------------------
# Uppercase string: Int32, Int64, Float64, etc. | {}.new(Scanner.s)
# s | Scanner.s
# c | Scanner.c
# Other lowercase string: i, i64, f, etc. | Scanner.s.to_{}
# operator[]: type[size] | Array.new(input(size)) { input(type) }
# Tuple literal: {t1, t2, t3} | {input(t1), input(t2), input(t3)}
# Array literal: [t1, t2, t3] | [input(t1), input(t2), input(t3)]
# Range literal: t1..t2 | input(t1)..input(t2)
# If: cond ? t1 : t2 | cond ? input(t1) : input(t2)
# Assign: target = value | target = input(value)
# ```
#
# ### Examples
#
# Input:
# ```plain
# 5 3
# foo bar
# 1 2 3 4 5
# ```
# ```
# n, m = input(Int32, Int64) # => {5, 10i64}
# input(String, Char[m]) # => {"foo", ['b', 'a', 'r']}
# input(Int32[n]) # => [1, 2, 3, 4, 5]
# ```
# ```
# n, m = input(i, i64) # => {5, 10i64}
# input(s, c[m]) # => {"foo", ['b', 'a', 'r']}
# input(i[n]) # => [1, 2, 3, 4, 5]
# ```
#
# Input:
# ```plain
# 2 3
# 1 2 3
# 4 5 6
# ```
#
# ```
# h, w = input(i, i) # => {2, 3}
# input(i[h, w]) # => [[1, 2, 3], [4, 5, 6]]
# ```
# ```
# input(i[i][i]) # => [[1, 2, 3], [4, 5, 6]]
# ```
#
# Input:
# ```plain
# 5 3
# 3 1 4 2 5
# 1 2
# 2 3
# 3 1
# ```
# ```
# n, m = input(i, i) # => {5, 3}
# input(i.pred[n]) # => [2, 0, 3, 1, 4]
# input({i - 1, i - 1}[m]) # => [{0, 1}, {1, 2}, {2, 0}]
# ```
#
# Input:
# ```plain
# 3
# 1 2
# 2 2
# 3 2
# ```
# ```
# input({tmp = i, tmp == 1 ? i : i.pred}[i]) # => [{1, 2}, {2, 1}, {3, 1}]
# ```
class Scanner
private def self.skip_to_not_space
peek = STDIN.peek
not_space = peek.index { |x| x != 32 && x != 10 } || peek.size
STDIN.skip(not_space)
end
def self.c
skip_to_not_space
STDIN.read_char.not_nil!
end
def self.s
skip_to_not_space
peek = STDIN.peek
if index = peek.index { |x| x == 32 || x == 10 }
STDIN.skip(index + 1)
return String.new(peek[0, index])
end
String.build do |buffer|
loop do
buffer.write peek
STDIN.skip(peek.size)
peek = STDIN.peek
break if peek.empty?
if index = peek.index { |x| x == 32 || x == 10 }
buffer.write peek[0, index]
STDIN.skip(index)
break
end
end
end
end
end
macro internal_input(s, else_ast)
{% if Scanner.class.has_method?(s.id) %}
Scanner.{{s.id}}
{% elsif s.stringify == "String" %}
Scanner.s
{% elsif s.stringify == "Char" %}
Scanner.c
{% elsif s.stringify =~ /[A-Z][a-z0-9_]*/ %}
{{s.id}}.new(Scanner.s)
{% elsif String.has_method?("to_#{s}".id) %}
Scanner.s.to_{{s.id}}
{% else %}
{{else_ast}}
{% end %}
end
macro internal_input_array(s, args)
{% for i in 0...args.size %}
%size{i} = input({{args[i]}})
{% end %}
{% begin %}
{% for i in 0...args.size %} Array.new(%size{i}) { {% end %}
input({{s.id}})
{% for i in 0...args.size %} } {% end %}
{% end %}
end
macro input(s)
{% if s.is_a?(Call) %}
{% if s.receiver.is_a?(Nop) %}
internal_input(
{{s.name}}, {{s.name}}(
{% for argument in s.args %} input({{argument}}), {% end %}
)
)
{% elsif s.name.stringify == "[]" %}
internal_input_array({{s.receiver}}, {{s.args}})
{% else %}
input({{s.receiver}}).{{s.name.id}}(
{% for argument in s.args %} input({{argument}}), {% end %}
) {{s.block}}
{% end %}
{% elsif s.is_a?(TupleLiteral) %}
{ {% for i in 0...s.size %} input({{s[i]}}), {% end %} }
{% elsif s.is_a?(ArrayLiteral) %}
[ {% for i in 0...s.size %} input({{s[i]}}), {% end %} ]
{% elsif s.is_a?(RangeLiteral) %}
Range.new(input({{s.begin}}), input({{s.end}}), {{s.excludes_end?}})
{% elsif s.is_a?(If) %}
{{s.cond}} ? input({{s.then}}) : input({{s.else}})
{% elsif s.is_a?(Assign) %}
{{s.target}} = input({{s.value}})
{% else %}
internal_input({{s.id}}, {{s.id}})
{% end %}
end
macro input(*s)
{ {% for s in s %} input({{s}}), {% end %} }
end
# require "atcoder/SCC"
# ac-library.cr by hakatashi https://github.com/google/ac-library.cr
#
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
module AtCoder
# Implements [atcoder::scc_graph](https://atcoder.github.io/ac-library/master/document_en/scc.html).
#
# ```
# scc = AtCoder::SCC.new(3_i64)
# scc.add_edge(0, 1)
# scc.add_edge(1, 0)
# scc.add_edge(2, 0)
# scc.scc # => [Set{2}, Set{0, 1}]
# ```
class SCC
alias Adjacency = NamedTuple(in: Array(Int64), out: Array(Int64))
getter size : Int64
getter adjacencies : Array(Adjacency)
def initialize(@size)
@adjacencies = Array(Adjacency).new(@size) { {in: [] of Int64, out: [] of Int64} }
@topological_order = Array(Int64).new(@size)
@visit_counts = Array(Int64).new(@size, 0_i64)
@visited = Set(Int64).new
@stack = Deque(Int64).new
@groups = Array(Set(Int64)).new
end
# Implements atcoder::scc_graph.add_edge(from, to).
def add_edge(from, to)
@adjacencies[from][:out] << to.to_i64
@adjacencies[to][:in] << from.to_i64
end
private def dfs(start)
@stack << start
@visited << start
until @stack.empty?
node = @stack.last
children = @adjacencies[node][:out]
if @visit_counts[node] < children.size
child = children[@visit_counts[node]]
@visit_counts[node] += 1
unless @visited.includes?(child)
@visited << child
@stack << child
end
else
@topological_order << node
@stack.pop
end
end
end
private def reverse_dfs(start)
@stack << start
@visited << start
group = Set{start}
until @stack.empty?
node = @stack.pop
children = @adjacencies[node][:in]
children.each do |child|
unless @visited.includes?(child)
@stack << child
@visited << child
group << child
end
end
end
@groups << group
end
# Implements atcoder::scc_graph.scc().
def scc
@visited = Set(Int64).new
@stack = Deque(Int64).new
@visit_counts = Array(Int64).new(@size, 0_i64)
@topological_order = Array(Int64).new(@size)
@groups = Array(Set(Int64)).new
@size.times do |node|
unless @visited.includes?(node)
dfs(node)
end
end
@visited = Set(Int64).new
@topological_order.reverse_each do |node|
unless @visited.includes?(node)
reverse_dfs(node)
end
end
@groups
end
end
end
# require "/graph/components"
# require "../graph"
# require "./graph/edge"
struct WeightedEdge(T)
include Comparable(WeightedEdge(T))
property to : Int32, cost : T
def initialize(@to, @cost : T)
end
def <=>(other : WeightedEdge(T))
{cost, to} <=> {other.cost, other.to}
end
def to_s(io) : Nil
io << '(' << to << ", " << cost << ')'
end
def inspect(io) : Nil
io << "->#{to}(#{cost})"
end
end
struct WeightedEdge2(T)
include Comparable(WeightedEdge2(T))
property from : Int32, to : Int32, cost : T
def initialize(@from, @to, @cost : T)
end
def initialize(@from, edge : WeightedEdge(T))
@to, @cost = edge.to, edge.cost
end
def <=>(other : WeightedEdge2(T))
{cost, from, to} <=> {other.cost, other.from, other.to}
end
def reverse
WeightedEdge2(T).new(to, from, cost)
end
def sort
WeightedEdge2(T).new(*{to, from}.minmax, cost)
end
def to_s(io) : Nil
io << '(' << from << ", " << to << ", " << cost << ')'
end
def inspect(io) : Nil
io << from << "->" << to << '(' << cost << ')'
end
end
struct UnweightedEdge
property to : Int32
def initialize(@to)
end
def cost
1
end
def to_s(io) : Nil
io << to
end
def inspect(io) : Nil
io << "->" << to
end
end
struct UnweightedEdge2
property from : Int32, to : Int32
def initialize(@from, @to)
end
def initialize(@from, edge : UnweightedEdge)
@to = edge.to
end
def cost
1
end
def reverse
UnweightedEdge2.new(to, from)
end
def sort
UnweightedEdge2.new(*{to, from}.minmax)
end
def to_s(io) : Nil
io << '(' << from << ", " << to << ')'
end
def inspect(io) : Nil
io << from << "->" << to
end
end
module Graph(Edge, Edge2)
include Enumerable(Edge2)
getter graph : Array(Array(Edge))
def initialize(size : Int)
@graph = Array(Array(Edge)).new(size) { [] of Edge }
end
def initialize(size : Int, edges : Enumerable)
initialize(size)
add_edges(edges)
end
# Add *edge*.
abstract def <<(edge : Edge2)
# :ditto:
def <<(edge : Tuple)
self << Edge2.new(*edge)
end
def add_edges(edges : Enumerable)
edges.each { |edge| self << edge }
end
delegate size, to: @graph
delegate :[], to: @graph
def each : Nil
(0...size).each do |v|
self[v].each do |edge|
yield Edge2.new(v, edge)
end
end
end
def reverse
if self.class.directed?
each_with_object(self.class.new(size)) do |edge, reversed|
reversed << edge.reverse
end
else
dup
end
end
def to_undirected
if self.class.directed?
each_with_object(self.class.new(size)) do |edge, graph|
graph << edge
graph << edge.reverse if self.class.directed?
end
else
dup
end
end
end
class DirectedGraph(T)
include Graph(WeightedEdge(T), WeightedEdge2(T))
def initialize(size : Int)
super
end
def initialize(size : Int, edges : Enumerable(WeightedEdge2(T)))
super
end
def initialize(size : Int, edges : Enumerable({Int32, Int32, T}))
super
end
def <<(edge : WeightedEdge2(T))
raise IndexError.new unless 0 <= edge.from < size && 0 <= edge.to < size
@graph[edge.from] << WeightedEdge.new(edge.to, edge.cost)
self
end
def self.weighted?
true
end
def self.directed?
true
end
end
class UndirectedGraph(T)
include Graph(WeightedEdge(T), WeightedEdge2(T))
def initialize(size : Int)
super
end
def initialize(size : Int, edges : Enumerable(WeightedEdge2(T)))
super
end
def initialize(size : Int, edges : Enumerable({Int32, Int32, T}))
super
end
def <<(edge : WeightedEdge2(T))
raise IndexError.new unless 0 <= edge.from < size && 0 <= edge.to < size
@graph[edge.from] << WeightedEdge.new(edge.to, edge.cost)
@graph[edge.to] << WeightedEdge.new(edge.from, edge.cost)
self
end
def self.weighted?
true
end
def self.directed?
false
end
end
class UnweightedDirectedGraph
include Graph(UnweightedEdge, UnweightedEdge2)
def initialize(size : Int)
super
end
def initialize(size : Int, edges : Enumerable)
super
end
def <<(edge : UnweightedEdge2)
raise IndexError.new unless 0 <= edge.from < size && 0 <= edge.to < size
@graph[edge.from] << UnweightedEdge.new(edge.to)
self
end
def self.weighted?
false
end
def self.directed?
true
end
end
class UnweightedUndirectedGraph
include Graph(UnweightedEdge, UnweightedEdge2)
def initialize(size : Int)
super
end
def initialize(size : Int, edges : Enumerable)
super
end
def <<(edge : UnweightedEdge2)
raise IndexError.new unless 0 <= edge.from < size && 0 <= edge.to < size
@graph[edge.from] << UnweightedEdge.new(edge.to)
@graph[edge.to] << UnweightedEdge.new(edge.from)
self
end
def each_child(vertex : Int, parent, &block) : Nil
graph[vertex].each do |u|
yield u if u != parent
end
end
def each_child(vertex : Int, parent)
graph[vertex].each.select { |u| u != parent }
end
def self.weighted?
false
end
def self.directed?
false
end
end
module Graph(Edge, Edge2)
# Returns `{components size, index, groups}`.
def components
undirected = to_undirected
index = Array(Int32?).new(size, nil)
groups = [] of Set(Int32)
id = 0
size.times do |v|
next if index[v]
que = Deque{v}
groups << Set(Int32).new
while u = que.shift?
next if index[u]
index[u] = id
groups[id] << u
undirected[u].each do |edge|
que << edge.to if index[edge.to].nil?
end
end
id += 1
end
{id, index.map(&.not_nil!), groups}
end
end
# require "/datastructure/union_find"
class UnionFind
@d : Array(Int32)
def initialize(n : Int)
@d = Array.new(n, -1)
end
def initialize(n : Int, edges : Enumerable({Int32, Int32}))
initialize(n)
edges.each { |u, v| unite(u, v) }
end
def root(x : Int)
@d[x] < 0 ? x : (@d[x] = root(@d[x]))
end
def unite(x : Int, y : Int)
x = root(x)
y = root(y)
return false if x == y
x, y = y, x if @d[x] > @d[y]
@d[x] += @d[y]
@d[y] = x
true
end
def same?(x : Int, y : Int)
root(x) == root(y)
end
def size(x : Int)
-@d[root(x)]
end
def groups
groups = Hash(Int32, Set(Int32)).new { |h, k| h[k] = Set(Int32).new }
@d.size.times do |i|
groups[root(i)] << i
end
groups.values.to_set
end
end
n, m = input(i, i)
edges = input({i - 1, i - 1}[m])
graph = UnweightedDirectedGraph.new n, edges
scc = AtCoder::SCC.new(n.to_i64)
graph.each do |edge|
scc.add_edge edge.from, edge.to
end
scc_groups = scc.scc.map &.map(&.to_i)
scc_id = [-1] * n
scc_groups.each_with_index do |group, id|
group.each { |i| scc_id[i] = id }
end
k, id, groups = graph.components
ans = [] of {Int32, Int32}
has_cycle = [false] * k
scc_groups.each do |group|
v = group.first
has_cycle[id[v]] = true if group.size > 1
end
topo = Array.new(k) { [] of Int32 }
scc_groups.each do |group|
group.each do |v|
topo[id[v]] << v
end
end
(0...k).each do |i|
group = groups[i].to_a
if has_cycle[i]
(0...group.size).each do |i|
ans << {group[i], group[i.succ % group.size]}
end
else
topo[i].each_cons_pair do |u, v|
ans << {u, v}
end
end
end
puts ans.size, ans.join('\n', &.join(' ', &.succ))
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0