結果

問題 No.1612 I hate Construct a Palindrome
ユーザー 👑 hitonanodehitonanode
提出日時 2021-07-21 21:47:23
言語 C++17
(gcc 13.2.0 + boost 1.83.0)
結果
AC  
実行時間 248 ms / 2,000 ms
コード長 13,598 bytes
コンパイル時間 2,173 ms
コンパイル使用メモリ 172,388 KB
実行使用メモリ 25,236 KB
最終ジャッジ日時 2023-09-24 16:39:53
合計ジャッジ時間 7,612 ms
ジャッジサーバーID
(参考情報)
judge13 / judge15
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
4,376 KB
testcase_01 AC 3 ms
4,380 KB
testcase_02 AC 133 ms
20,048 KB
testcase_03 AC 2 ms
4,376 KB
testcase_04 AC 2 ms
4,380 KB
testcase_05 AC 132 ms
20,540 KB
testcase_06 AC 118 ms
18,328 KB
testcase_07 AC 122 ms
18,332 KB
testcase_08 AC 125 ms
18,000 KB
testcase_09 AC 126 ms
17,860 KB
testcase_10 AC 125 ms
17,720 KB
testcase_11 AC 123 ms
17,904 KB
testcase_12 AC 136 ms
18,268 KB
testcase_13 AC 134 ms
18,264 KB
testcase_14 AC 137 ms
18,192 KB
testcase_15 AC 248 ms
25,180 KB
testcase_16 AC 241 ms
25,136 KB
testcase_17 AC 234 ms
25,236 KB
testcase_18 AC 2 ms
4,380 KB
testcase_19 AC 2 ms
4,376 KB
testcase_20 AC 2 ms
4,380 KB
testcase_21 AC 2 ms
4,376 KB
testcase_22 AC 3 ms
4,376 KB
testcase_23 AC 2 ms
4,376 KB
testcase_24 AC 2 ms
4,376 KB
testcase_25 AC 3 ms
4,380 KB
testcase_26 AC 2 ms
4,376 KB
testcase_27 AC 2 ms
4,380 KB
testcase_28 AC 1 ms
4,376 KB
testcase_29 AC 2 ms
4,376 KB
testcase_30 AC 2 ms
4,380 KB
testcase_31 AC 1 ms
4,376 KB
testcase_32 AC 1 ms
4,380 KB
testcase_33 AC 2 ms
4,380 KB
testcase_34 AC 1 ms
4,380 KB
testcase_35 AC 1 ms
4,380 KB
testcase_36 AC 2 ms
4,376 KB
testcase_37 AC 2 ms
4,376 KB
testcase_38 AC 2 ms
4,380 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: 関数 ‘int main()’ 内:
main.cpp:347:17: 警告: ‘c1’ may be used uninitialized [-Wmaybe-uninitialized]
  347 |     auto S = S1 + c1 + S2;
      |              ~~~^~~~
main.cpp:313:10: 備考: ‘c1’ はここで定義されています
  313 |     char c1;
      |          ^~
main.cpp:324:16: 警告: ‘b1’ may be used uninitialized [-Wmaybe-uninitialized]
  324 |     graph.solve(b1);
      |     ~~~~~~~~~~~^~~~
main.cpp:312:17: 備考: ‘b1’ はここで定義されています
  312 |     int e1, a1, b1;
      |                 ^~
main.cpp:323:38: 警告: ‘a1’ may be used uninitialized [-Wmaybe-uninitialized]
  323 |     auto p01 = graph.retrieve_path(a1);
      |                                      ^
main.cpp:312:13: 備考: ‘a1’ はここで定義されています
  312 |     int e1, a1, b1;
      |             ^~

ソースコード

diff #

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T, typename V>
void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }
template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <typename T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <typename T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
#if __cplusplus >= 201703L
template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; }
#endif
template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; }
template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl
#define dbgif(cond, x) ((cond) ? cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl : cerr)
#else
#define dbg(x) (x)
#define dbgif(cond, x) 0
#endif

void bad() {
    puts("-1");
    exit(0);
}

template <typename T, T INF = std::numeric_limits<T>::max() / 2, int INVALID = -1> struct ShortestPath {
    int V, E;
    bool single_positive_weight;
    T wmin, wmax;
    std::vector<std::vector<std::pair<int, T>>> to;

    ShortestPath(int V = 0) : V(V), E(0), single_positive_weight(true), wmin(0), wmax(0), to(V) {}
    void add_edge(int s, int t, T w) {
        assert(0 <= s and s < V);
        assert(0 <= t and t < V);
        to[s].emplace_back(t, w);
        E++;
        if (w > 0 and wmax > 0 and wmax != w) single_positive_weight = false;
        wmin = std::min(wmin, w);
        wmax = std::max(wmax, w);
    }

    std::vector<T> dist;
    std::vector<int> prev;

    // Dijkstra algorithm
    // Complexity: O(E log E)
    void Dijkstra(int s) {
        assert(0 <= s and s < V);
        dist.assign(V, INF);
        dist[s] = 0;
        prev.assign(V, INVALID);
        using P = std::pair<T, int>;
        std::priority_queue<P, std::vector<P>, std::greater<P>> pq;
        pq.emplace(0, s);
        while (!pq.empty()) {
            T d;
            int v;
            std::tie(d, v) = pq.top();
            pq.pop();
            if (dist[v] < d) continue;
            for (auto nx : to[v]) {
                T dnx = d + nx.second;
                if (dist[nx.first] > dnx) {
                    dist[nx.first] = dnx, prev[nx.first] = v;
                    pq.emplace(dnx, nx.first);
                }
            }
        }
    }

    // Dijkstra algorithm, O(V^2 + E)
    void DijkstraVquad(int s) {
        assert(0 <= s and s < V);
        dist.assign(V, INF);
        dist[s] = 0;
        prev.assign(V, INVALID);
        std::vector<char> fixed(V, false);
        while (true) {
            int r = INVALID;
            T dr = INF;
            for (int i = 0; i < V; i++) {
                if (!fixed[i] and dist[i] < dr) r = i, dr = dist[i];
            }
            if (r == INVALID) break;
            fixed[r] = true;
            int nxt;
            T dx;
            for (auto p : to[r]) {
                std::tie(nxt, dx) = p;
                if (dist[nxt] > dist[r] + dx) dist[nxt] = dist[r] + dx, prev[nxt] = r;
            }
        }
    }

    // Bellman-Ford algorithm
    // Complexity: O(VE)
    bool BellmanFord(int s, int nb_loop) {
        assert(0 <= s and s < V);
        dist.assign(V, INF), prev.assign(V, INVALID);
        dist[s] = 0;
        for (int l = 0; l < nb_loop; l++) {
            bool upd = false;
            for (int v = 0; v < V; v++) {
                if (dist[v] == INF) continue;
                for (auto nx : to[v]) {
                    T dnx = dist[v] + nx.second;
                    if (dist[nx.first] > dnx) dist[nx.first] = dnx, prev[nx.first] = v, upd = true;
                }
            }
            if (!upd) return true;
        }
        return false;
    }

    // Bellman-ford algorithm using queue (deque)
    // Complexity: O(VE)
    // Requirement: no negative loop
    void SPFA(int s) {
        assert(0 <= s and s < V);
        dist.assign(V, INF);
        prev.assign(V, INVALID);
        std::deque<int> q;
        std::vector<char> in_queue(V);
        dist[s] = 0;
        q.push_back(s), in_queue[s] = 1;
        while (!q.empty()) {
            int now = q.front();
            q.pop_front(), in_queue[now] = 0;
            for (auto nx : to[now]) {
                T dnx = dist[now] + nx.second;
                int nxt = nx.first;
                if (dist[nxt] > dnx) {
                    dist[nxt] = dnx;
                    if (!in_queue[nxt]) {
                        if (q.size() and dnx < dist[q.front()]) { // Small label first optimization
                            q.push_front(nxt);
                        } else {
                            q.push_back(nxt);
                        }
                        prev[nxt] = now, in_queue[nxt] = 1;
                    }
                }
            }
        }
    }

    void ZeroOneBFS(int s) {
        assert(0 <= s and s < V);
        dist.assign(V, INF), prev.assign(V, INVALID);
        dist[s] = 0;
        std::deque<int> que;
        que.push_back(s);
        while (!que.empty()) {
            int v = que.front();
            que.pop_front();
            for (auto nx : to[v]) {
                T dnx = dist[v] + nx.second;
                if (dist[nx.first] > dnx) {
                    dist[nx.first] = dnx, prev[nx.first] = v;
                    if (nx.second) {
                        que.push_back(nx.first);
                    } else {
                        que.push_front(nx.first);
                    }
                }
            }
        }
    }

    // Retrieve a sequence of vertex ids that represents shortest path [s, ..., goal]
    // If not reachable to goal, return {}
    std::vector<int> retrieve_path(int goal) const {
        assert(int(prev.size()) == V);
        assert(0 <= goal and goal < V);
        if (dist[goal] == INF) return {};
        std::vector<int> ret{goal};
        while (prev[goal] != INVALID) {
            goal = prev[goal];
            ret.push_back(goal);
        }
        std::reverse(ret.begin(), ret.end());
        return ret;
    }

    void solve(int s) {
        if (wmin >= 0) {
            if (single_positive_weight) {
                ZeroOneBFS(s);
            } else {
                if ((long long)V * V < (E << 4)) {
                    DijkstraVquad(s);
                } else {
                    Dijkstra(s);
                }
            }
        } else {
            BellmanFord(s, V);
        }
    }

    // Warshall-Floyd algorithm
    // Complexity: O(E + V^3)
    std::vector<std::vector<T>> dist2d;
    void WarshallFloyd() {
        dist2d.assign(V, std::vector<T>(V, INF));
        for (int i = 0; i < V; i++) {
            dist2d[i][i] = 0;
            for (auto p : to[i]) dist2d[i][p.first] = std::min(dist2d[i][p.first], p.second);
        }
        for (int k = 0; k < V; k++) {
            for (int i = 0; i < V; i++) {
                if (dist2d[i][k] == INF) continue;
                for (int j = 0; j < V; j++) {
                    if (dist2d[k][j] == INF) continue;
                    dist2d[i][j] = std::min(dist2d[i][j], dist2d[i][k] + dist2d[k][j]);
                }
            }
        }
    }

    void dump_graphviz(std::string filename = "shortest_path") const {
        std::ofstream ss(filename + ".DOT");
        ss << "digraph{\n";
        for (int i = 0; i < V; i++) {
            for (const auto &e : to[i]) ss << i << "->" << e.first << "[label=" << e.second << "];\n";
        }
        ss << "}\n";
        ss.close();
        return;
    }
};


int main() {
    int N, M;
    cin >> N >> M;
    vector<vector<tuple<int, int, char>>> to(N);
    set<char> sc;
    vector<tuple<int, int, char>> edges;
    ShortestPath<int> graph(N);
    REP(e, M) {
        int a, b;
        char c;
        cin >> a >> b >> c;
        sc.insert(c);
        a--, b--;
        to[a].emplace_back(b, e, c);
        to[b].emplace_back(a, e, c);
        edges.emplace_back(a, b, c);
        graph.add_edge(a, b, 1);
        graph.add_edge(b, a, 1);
    }
    if (sc.size() == 1) bad();

    const auto c0 = get<2>(to[0][0]);
    int e1, a1, b1;
    char c1;
    REP(e, M) {
        auto [a, b, c] = edges[e];
        if (c != c0) {
            e1 = e;
            a1 = a, b1 = b;
            c1 = c;
        }
    }
    graph.solve(0);
    auto p01 = graph.retrieve_path(a1);
    graph.solve(b1);
    auto pbN = graph.retrieve_path(N - 1);

    auto ret_e = [&](vector<int> vpath) {
        vector<int> ret;
        string retc;
        FOR(i, 1, vpath.size()) {
            for (auto [j, e, c] : to[vpath[i - 1]]) {
                if (j == vpath[i]) {
                    ret.push_back(e);
                    retc += c;
                    break;
                }
            }
        }
        return make_pair(ret, retc);
    };
    auto [es1, S1] = ret_e(p01);
    auto [es2, S2] = ret_e(pbN);
    vector<int> seq = es1;
    seq.push_back(e1);
    dbg(seq);
    seq.insert(seq.end(), es2.begin(), es2.end());
    auto S = S1 + c1 + S2;
    auto Srev = S;
    reverse(ALL(Srev));

    if (S == Srev) {
        int e0 = get<1>(to[0][0]);
        REP(t, 2) seq.insert(seq.begin(), e0);
    }
    cout << seq.size() << '\n';
    for (auto x : seq) cout << x + 1 << '\n';
}
0