結果
| 問題 |
No.1615 Double Down
|
| ユーザー |
heno239
|
| 提出日時 | 2021-07-21 22:50:37 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 4,963 bytes |
| コンパイル時間 | 1,922 ms |
| コンパイル使用メモリ | 158,416 KB |
| 最終ジャッジ日時 | 2025-01-23 04:53:32 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 10 WA * 44 |
ソースコード
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<unordered_set>
#include<utility>
#include<cassert>
#include<complex>
#include<numeric>
#include<array>
using namespace std;
//#define int long long
typedef long long ll;
typedef unsigned long long ul;
typedef unsigned int ui;
constexpr ll mod = 998244353;
const ll INF = mod * mod;
typedef pair<int, int>P;
#define stop char nyaa;cin>>nyaa;
#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
#define all(v) (v).begin(),(v).end()
typedef pair<ll, ll> LP;
typedef long double ld;
typedef pair<ld, ld> LDP;
const ld eps = 1e-12;
const ld pi = acosl(-1.0);
ll mod_pow(ll x, ll n, ll m = mod) {
if (n < 0) {
ll res = mod_pow(x, -n, m);
return mod_pow(res, m - 2, m);
}
if (abs(x) >= m)x %= m;
if (x < 0)x += m;
ll res = 1;
while (n) {
if (n & 1)res = res * x % m;
x = x * x % m; n >>= 1;
}
return res;
}
struct modint {
ll n;
modint() :n(0) { ; }
modint(ll m) :n(m) {
if (n >= mod)n %= mod;
else if (n < 0)n = (n % mod + mod) % mod;
}
operator int() { return n; }
};
bool operator==(modint a, modint b) { return a.n == b.n; }
modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }
modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }
modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }
modint operator+(modint a, modint b) { return a += b; }
modint operator-(modint a, modint b) { return a -= b; }
modint operator*(modint a, modint b) { return a *= b; }
modint operator^(modint a, ll n) {
if (n == 0)return modint(1);
modint res = (a * a) ^ (n / 2);
if (n % 2)res = res * a;
return res;
}
ll inv(ll a, ll p) {
return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);
}
modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }
modint operator/=(modint& a, modint b) { a = a / b; return a; }
const int max_n = 1 << 18;
modint fact[max_n], factinv[max_n];
void init_f() {
fact[0] = modint(1);
for (int i = 0; i < max_n - 1; i++) {
fact[i + 1] = fact[i] * modint(i + 1);
}
factinv[max_n - 1] = modint(1) / fact[max_n - 1];
for (int i = max_n - 2; i >= 0; i--) {
factinv[i] = factinv[i + 1] * modint(i + 1);
}
}
modint comb(int a, int b) {
if (a < 0 || b < 0 || a < b)return 0;
return fact[a] * factinv[b] * factinv[a - b];
}
modint combP(int a, int b) {
if (a < 0 || b < 0 || a < b)return 0;
return fact[a] * factinv[a - b];
}
struct edge { int to; ll cap; int rev; };
struct Dinic {
int n;
vector<vector<edge>> v;
vector<int> dist, iter;
Dinic(int sz) :n(sz), v(sz), dist(sz), iter(sz) {}
void addedge(int from, int to, ll cap) {
int x = v[to].size(), y = v[from].size();
v[from].push_back({ to,cap,x });
v[to].push_back({ from,0,y });
}
void bfs(int s) {
fill(dist.begin(), dist.end(), -1);
queue<int> q;
dist[s] = 0;
q.push(s);
while (q.size()) {
int x = q.front(); q.pop();
rep(i, v[x].size()) {
edge& e = v[x][i];
if (e.cap > 0 && dist[e.to] < 0) {
dist[e.to] = dist[x] + 1;
q.push(e.to);
}
}
}
}
ll dfs(int x, int t, ll f) {
if (x == t)return f;
for (int& i = iter[x]; i < (int)v[x].size(); ++i) {
edge& e = v[x][i];
if (e.cap > 0 && dist[x] < dist[e.to]) {
ll d = dfs(e.to, t, min(f, e.cap));
if (d > 0) {
e.cap -= d;
v[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
ll max_flow(int s, int t) {
ll flow = 0;
while (1) {
bfs(s);
if (dist[t] < 0)return flow;
fill(iter.begin(), iter.end(), 0);
ll f;
while ((f = dfs(s, t, 1LL << 62)) > 0)flow += f;
}
}
};
void solve() {
int n, m, k, l; cin >> n >> m >> k >> l;
vector<int> x(l), y(l), z(l);
rep(i, l) {
cin >> x[i] >> y[i] >> z[i];
x[i]--; y[i]--;
}
vector<bool> usedn(n), usedm(m);
ll ans = 0;
Dinic dc(n + m + 2);
int s = n + m;
int t = s + 1;
rep(i, n)dc.addedge(s, i, 1);
rep(i, m)dc.addedge(i + n, t, 1);
for (int i = k; i >= 0; i--) {
rep(j, l)if (z[j] == i) {
if (usedn[x[j]])continue;
dc.addedge(x[j], y[j] + n, 1);
}
int f = dc.max_flow(s, t);
ll cost = 1 << i;
ans += f * cost;
rep(i, n) {
for (edge e : dc.v[i])if (e.to != s && e.cap == 0) {
usedn[i] = true;
usedm[e.to - n] = true;
}
}
}
cout << ans << "\n";
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
//cout << fixed << setprecision(12);
//init_f();
//init();
//expr();
//int t; cin >> t; rep(i, t)
solve();
return 0;
}
heno239