結果
| 問題 |
No.1611 Minimum Multiple with Double Divisors
|
| コンテスト | |
| ユーザー |
👑 |
| 提出日時 | 2021-07-21 23:35:34 |
| 言語 | Lua (LuaJit 2.1.1734355927) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 2,131 bytes |
| コンパイル時間 | 408 ms |
| コンパイル使用メモリ | 6,816 KB |
| 実行使用メモリ | 21,056 KB |
| 最終ジャッジ日時 | 2024-07-17 20:42:59 |
| 合計ジャッジ時間 | 7,254 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 2 |
| other | TLE * 1 -- * 36 |
ソースコード
local mce, mfl, msq, mmi, mma, mab = math.ceil, math.floor, math.sqrt, math.min, math.max, math.abs
local function getprimes(x)
local primes = {}
local allnums = {}
for i = 1, x do allnums[i] = true end
for i = 2, x do
if allnums[i] then
table.insert(primes, i)
local lim = mfl(x / i)
for j = 2, lim do
allnums[j * i] = false
end
end
end
return primes
end
local function getdivisorparts(x, primes)
local prime_num = #primes
local tmp = {}
local lim = mce(msq(x))
local primepos = 1
local dv = primes[primepos]
while primepos <= prime_num and dv <= lim do
if x % dv == 0 then
x = mfl(x / dv)
local cnt = 1
while x % dv == 0 do
x = mfl(x / dv)
cnt = cnt + 1
end
table.insert(tmp, {dv, cnt})
lim = mce(msq(x))
end
if primepos == prime_num then break end
primepos = primepos + 1
dv = primes[primepos]
end
if x ~= 1 then
table.insert(tmp, {x, 1})
end
return tmp
end
local primes = getprimes(400000)
local q = io.read("*n")
for iq = 1, q do
local x = io.read("*n")
local v = false
for i = 1, #primes do
local p = primes[i]
if x % p ~= 0 then
v = p
break
end
end
local ans = 1 * v
ans = ans * x
local dvp = getdivisorparts(x, primes)
local tot = 1
for i = 1, #dvp do
tot = tot * (1 + dvp[i][2])
end
local box = {}
if 1 < x then
box[1] = dvp[#dvp][2]
for i = 2, #dvp do
box[i] = box[i - 1] * dvp[#dvp + 1 - i][2]
end
end
local function DIG(i, rem, v)
local p = dvp[i][1]
local z = dvp[i][2]
if i == #dvp then
if z + 1 <= rem then
for j = 1, rem - 1 do
v = v * p
end
if v < ans then ans = v end
end
else
for j = 1, z - 1 do
v = v * p
end
for j = z, 2 * z + 1 do
v = v * p
local qqq = mfl(rem / (j + 1))
if qqq < box[#dvp - i] then break end
if rem % (j + 1) == 0 then
DIG(i + 1, qqq, v)
end
end
end
end
if 1 < x then
DIG(1, tot * 2, 1)
end
print(ans)
end