結果

問題 No.1662 (ox) Alternative
ユーザー LayCurseLayCurse
提出日時 2021-07-22 08:24:37
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
RE  
実行時間 -
コード長 22,183 bytes
コンパイル時間 3,391 ms
コンパイル使用メモリ 235,076 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-11-21 00:07:23
合計ジャッジ時間 5,174 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 RE -
testcase_01 RE -
testcase_02 RE -
testcase_03 RE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("inline")
#include<bits/stdc++.h>
using namespace std;
#define MD (1000000007U)
void*wmem;
char memarr[96000000];
template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){
  static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
  (*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] );
  (*arr)=(T*)(*mem);
  (*mem)=((*arr)+x);
}
template<class T> inline void walloc1d(T **arr, int x1, int x2, void **mem = &wmem){
  walloc1d(arr, x2-x1, mem);
  (*arr) -= x1;
}
struct Modint{
  unsigned val;
  Modint(){
    val=0;
  }
  Modint(int a){
    val = ord(a);
  }
  Modint(unsigned a){
    val = ord(a);
  }
  Modint(long long a){
    val = ord(a);
  }
  Modint(unsigned long long a){
    val = ord(a);
  }
  inline unsigned ord(unsigned a){
    return a%MD;
  }
  inline unsigned ord(int a){
    a %= (int)MD;
    if(a < 0){
      a += MD;
    }
    return a;
  }
  inline unsigned ord(unsigned long long a){
    return a%MD;
  }
  inline unsigned ord(long long a){
    a %= (int)MD;
    if(a < 0){
      a += MD;
    }
    return a;
  }
  inline unsigned get(){
    return val;
  }
  inline Modint &operator++(){
    val++;
    if(val >= MD){
      val -= MD;
    }
    return *this;
  }
  inline Modint &operator--(){
    if(val == 0){
      val = MD - 1;
    }
    else{
      --val;
    }
    return *this;
  }
  inline Modint operator++(int a){
    Modint res(*this);
    val++;
    if(val >= MD){
      val -= MD;
    }
    return res;
  }
  inline Modint operator--(int a){
    Modint res(*this);
    if(val == 0){
      val = MD - 1;
    }
    else{
      --val;
    }
    return res;
  }
  inline Modint &operator+=(Modint a){
    val += a.val;
    if(val >= MD){
      val -= MD;
    }
    return *this;
  }
  inline Modint &operator-=(Modint a){
    if(val < a.val){
      val = val + MD - a.val;
    }
    else{
      val -= a.val;
    }
    return *this;
  }
  inline Modint &operator*=(Modint a){
    val = ((unsigned long long)val*a.val)%MD;
    return *this;
  }
  inline Modint &operator/=(Modint a){
    return *this *= a.inverse();
  }
  inline Modint operator+(Modint a){
    return Modint(*this)+=a;
  }
  inline Modint operator-(Modint a){
    return Modint(*this)-=a;
  }
  inline Modint operator*(Modint a){
    return Modint(*this)*=a;
  }
  inline Modint operator/(Modint a){
    return Modint(*this)/=a;
  }
  inline Modint operator+(int a){
    return Modint(*this)+=Modint(a);
  }
  inline Modint operator-(int a){
    return Modint(*this)-=Modint(a);
  }
  inline Modint operator*(int a){
    return Modint(*this)*=Modint(a);
  }
  inline Modint operator/(int a){
    return Modint(*this)/=Modint(a);
  }
  inline Modint operator+(long long a){
    return Modint(*this)+=Modint(a);
  }
  inline Modint operator-(long long a){
    return Modint(*this)-=Modint(a);
  }
  inline Modint operator*(long long a){
    return Modint(*this)*=Modint(a);
  }
  inline Modint operator/(long long a){
    return Modint(*this)/=Modint(a);
  }
  inline Modint operator-(void){
    Modint res;
    if(val){
      res.val=MD-val;
    }
    else{
      res.val=0;
    }
    return res;
  }
  inline operator bool(void){
    return val!=0;
  }
  inline operator int(void){
    return get();
  }
  inline operator long long(void){
    return get();
  }
  inline Modint inverse(){
    int a = val;
    int b = MD;
    int u = 1;
    int v = 0;
    int t;
    Modint res;
    while(b){
      t = a / b;
      a -= t * b;
      swap(a, b);
      u -= t * v;
      swap(u, v);
    }
    if(u < 0){
      u += MD;
    }
    res.val = u;
    return res;
  }
  inline Modint pw(unsigned long long b){
    Modint a(*this);
    Modint res;
    res.val = 1;
    while(b){
      if(b&1){
        res *= a;
      }
      b >>= 1;
      a *= a;
    }
    return res;
  }
  inline bool operator==(int a){
    return ord(a)==val;
  }
  inline bool operator!=(int a){
    return ord(a)!=val;
  }
}
;
inline Modint operator+(int a, Modint b){
  return Modint(a)+=b;
}
inline Modint operator-(int a, Modint b){
  return Modint(a)-=b;
}
inline Modint operator*(int a, Modint b){
  return Modint(a)*=b;
}
inline Modint operator/(int a, Modint b){
  return Modint(a)/=b;
}
inline Modint operator+(long long a, Modint b){
  return Modint(a)+=b;
}
inline Modint operator-(long long a, Modint b){
  return Modint(a)-=b;
}
inline Modint operator*(long long a, Modint b){
  return Modint(a)*=b;
}
inline Modint operator/(long long a, Modint b){
  return Modint(a)/=b;
}
inline void my_putchar_unlocked(const int k){
  putchar_unlocked(k);
}
inline void wt_L(char a){
  my_putchar_unlocked(a);
}
inline void wt_L(int x){
  int s=0;
  int m=0;
  char f[10];
  if(x<0){
    m=1;
    x=-x;
  }
  while(x){
    f[s++]=x%10;
    x/=10;
  }
  if(!s){
    f[s++]=0;
  }
  if(m){
    my_putchar_unlocked('-');
  }
  while(s--){
    my_putchar_unlocked(f[s]+'0');
  }
}
inline void wt_L(unsigned x){
  int s=0;
  char f[10];
  while(x){
    f[s++]=x%10;
    x/=10;
  }
  if(!s){
    f[s++]=0;
  }
  while(s--){
    my_putchar_unlocked(f[s]+'0');
  }
}
inline void wt_L(long long x){
  int s=0;
  int m=0;
  char f[20];
  if(x<0){
    m=1;
    x=-x;
  }
  while(x){
    f[s++]=x%10;
    x/=10;
  }
  if(!s){
    f[s++]=0;
  }
  if(m){
    my_putchar_unlocked('-');
  }
  while(s--){
    my_putchar_unlocked(f[s]+'0');
  }
}
inline void wt_L(unsigned long long x){
  int s=0;
  char f[21];
  while(x){
    f[s++]=x%10;
    x/=10;
  }
  if(!s){
    f[s++]=0;
  }
  while(s--){
    my_putchar_unlocked(f[s]+'0');
  }
}
inline void wt_L(Modint x){
  int i;
  i = (int)x;
  wt_L(i);
}
int WRITER_DOUBLE_DIGIT = 15;
inline int writerDigit_double(){
  return WRITER_DOUBLE_DIGIT;
}
inline void writerDigit_double(int d){
  WRITER_DOUBLE_DIGIT = d;
}
inline void wt_L(double x){
  const int d = WRITER_DOUBLE_DIGIT;
  int k;
  int r;
  double v;
  if(x!=x || (x==x+1 && x==2*x)){
    my_putchar_unlocked('E');
    my_putchar_unlocked('r');
    my_putchar_unlocked('r');
    return;
  }
  if(x < 0){
    my_putchar_unlocked('-');
    x = -x;
  }
  x += 0.5 * pow(0.1, d);
  r = 0;
  v = 1;
  while(x >= 10*v){
    v *= 10;
    r++;
  }
  while(r >= 0){
    r--;
    k = floor(x / v);
    if(k >= 10){
      k = 9;
    }
    if(k <= -1){
      k = 0;
    }
    x -= k * v;
    v *= 0.1;
    my_putchar_unlocked(k + '0');
  }
  if(d > 0){
    my_putchar_unlocked('.');
    v = 1;
    for(r=(0);r<(d);r++){
      v *= 0.1;
      k = floor(x / v);
      if(k >= 10){
        k = 9;
      }
      if(k <= -1){
        k = 0;
      }
      x -= k * v;
      my_putchar_unlocked(k + '0');
    }
  }
}
inline void wt_L(const char c[]){
  int i=0;
  for(i=0;c[i]!='\0';i++){
    my_putchar_unlocked(c[i]);
  }
}
inline void wt_L(string &x){
  int i=0;
  for(i=0;x[i]!='\0';i++){
    my_putchar_unlocked(x[i]);
  }
}
template<class S, class T> inline S chmax(S &a, T b){
  if(a<b){
    a=b;
  }
  return a;
}
template<class T> struct Comb{
  int mem_fact;
  T*factri;
  T*ifactri;
  int mem_dfact;
  T*dfactri;
  int mem_pw2;
  int mem_pw3;
  int mem_pw10;
  int mem_rep1;
  T*pw2c;
  T*pw3c;
  T*pw10c;
  T*rep1c;
  int mem_ipw2;
  int mem_ipw3;
  int mem_ipw10;
  T*ipw2c;
  T*ipw3c;
  T*ipw10c;
  Comb(){
    mem_fact = 0;
    mem_dfact = 0;
    mem_pw2 = mem_pw3 = mem_pw10 = mem_rep1 = 0;
    mem_ipw2 = mem_ipw3 = mem_ipw10 = 0;
  }
  inline void expand_fact(int k){
    int i;
    if(k <= mem_fact){
      return;
    }
    chmax(k, 2 * mem_fact);
    if(mem_fact == 0){
      factri = (T*)malloc(k * sizeof(T));
      ifactri = (T*)malloc(k * sizeof(T));
      factri[0] = 1;
      for(i=(1);i<(k);i++){
        factri[i] = i * factri[i-1];
      }
      ifactri[k-1] = 1 / factri[k-1];
      for(i=(k-1)-1;i>=(0);i--){
        ifactri[i] = (i+1) * ifactri[i+1];
      }
    }
    else{
      factri = (T*)realloc(factri, k * sizeof(T));
      ifactri = (T*)realloc(ifactri, k * sizeof(T));
      for(i=(mem_fact);i<(k);i++){
        factri[i] = i * factri[i-1];
      }
      ifactri[k-1] = 1 / factri[k-1];
      for(i=(k-1)-1;i>=(mem_fact);i--){
        ifactri[i] = (i+1) * ifactri[i+1];
      }
    }
    mem_fact = k;
  }
  inline T fac(int k){
    if(mem_fact < k+1){
      expand_fact(k+1);
    }
    return factri[k];
  }
  inline T ifac(int k){
    if(mem_fact < k+1){
      expand_fact(k+1);
    }
    return ifactri[k];
  }
  inline T C(int a, int b){
    if(b < 0 || b > a){
      return 0;
    }
    if(mem_fact < a+1){
      expand_fact(a+1);
    }
    return factri[a] * ifactri[b] * ifactri[a-b];
  }
  inline T P(int a, int b){
    if(b < 0 || b > a){
      return 0;
    }
    if(mem_fact < a+1){
      expand_fact(a+1);
    }
    return factri[a] * ifactri[a-b];
  }
  inline T H(int a, int b){
    if(a==0 && b==0){
      return 1;
    }
    if(a <= 0 || b < 0){
      return 0;
    }
    if(mem_fact < a+b){
      expand_fact(a+b);
    }
    return C(a+b-1, b);
  }
  inline T Multinomial(int sz, int a[]){
    int i;
    int s = 0;
    T res;
    for(i=(0);i<(sz);i++){
      s += a[i];
    }
    if(mem_fact < s+1){
      expand_fact(s+1);
    }
    res = factri[s];
    for(i=(0);i<(sz);i++){
      res *= ifactri[a[i]];
    }
    return res;
  }
  inline T Multinomial(int a){
    return 1;
  }
  inline T Multinomial(int a, int b){
    if(mem_fact < a+b+1){
      expand_fact(a+b+1);
    }
    return factri[a+b] * ifactri[a] * ifactri[b];
  }
  inline T Multinomial(int a, int b, int c){
    if(mem_fact < a+b+c+1){
      expand_fact(a+b+c+1);
    }
    return factri[a+b+c] * ifactri[a] * ifactri[b] * ifactri[c];
  }
  inline T Multinomial(int a, int b, int c, int d){
    if(mem_fact < a+b+c+d+1){
      expand_fact(a+b+c+d+1);
    }
    return factri[a+b+c+d] * ifactri[a] * ifactri[b] * ifactri[c] * ifactri[d];
  }
  inline T Catalan(int n){
    if(n < 0){
      return 0;
    }
    if(mem_fact < 2*n+1){
      expand_fact(2*n+1);
    }
    return factri[2*n] * ifactri[n] * ifactri[n+1];
  }
  inline T Catalan(int n, int m, int k){
    if(k <= 0){
      return C(n+m, n);
    }
    if(n < k || m < k){
      return 0;
    }
    return C(n+m, m) - C(n+m, k-1);
  }
  inline T Catalan_s(long long n, long long m, long long k){
    if(k <= 0){
      return C_s(n+m, n);
    }
    if(n < k || m < k){
      return 0;
    }
    return C_s(n+m, m) - C_s(n+m, k-1);
  }
  inline T C_s(long long a, long long b){
    long long i;
    T res;
    if(b < 0 || b > a){
      return 0;
    }
    if(b > a - b){
      b = a - b;
    }
    res = 1;
    for(i=(0);i<(b);i++){
      res *= a - i;
      res /= i + 1;
    }
    return res;
  }
  inline T P_s(long long a, long long b){
    long long i;
    T res;
    if(b < 0 || b > a){
      return 0;
    }
    res = 1;
    for(i=(0);i<(b);i++){
      res *= a - i;
    }
    return res;
  }
  inline T H_s(long long a, long long b){
    if(a==0 && b==0){
      return 1;
    }
    if(a <= 0 || b < 0){
      return 0;
    }
    return C_s(a+b-1, b);
  }
  inline T per_s(long long n, long long k){
    T d;
    int m;
    if(n < 0 || k < 0){
      return 0;
    }
    if(n == k  &&  k == 0){
      return 1;
    }
    if(n == 0 || k == 0){
      return 0;
    }
    if(k==1){
      return 1;
    }
    if(k==2){
      d = n / 2;
      return d;
    }
    if(k==3){
      d = (n-1) / 6;
      m = (n-1) % 6;
      if(m==0){
        return 3 * d * d + d;
      }
      if(m==1){
        return 3 * d * d + 2 * d;
      }
      if(m==2){
        return 3 * d * d + 3 * d + 1;
      }
      if(m==3){
        return 3 * d * d + 4 * d + 1;
      }
      if(m==4){
        return 3 * d * d + 5 * d + 2;
      }
      if(m==5){
        return 3 * d * d + 6 * d + 3;
      }
    }
    assert(0 && "per_s should be k <= 3");
    return -1;
  }
  inline void expand_dfact(int k){
    int i;
    if(k <= mem_dfact){
      return;
    }
    chmax(k, 3);
    chmax(k, 2 * mem_dfact);
    if(mem_dfact==0){
      dfactri = (T*)malloc(k * sizeof(T));
      dfactri[0] = dfactri[1] = 1;
      for(i=(2);i<(k);i++){
        dfactri[i] = i * dfactri[i-2];
      }
    }
    else{
      dfactri = (T*)realloc(dfactri, k * sizeof(T));
      for(i=(mem_dfact);i<(k);i++){
        dfactri[i] = i * dfactri[i-2];
      }
    }
    mem_dfact = k;
  }
  inline void expand_pw2(int k){
    int i;
    if(k <= mem_pw2){
      return;
    }
    chmax(k, 2 * mem_pw2);
    if(mem_pw2==0){
      pw2c = (T*)malloc(k * sizeof(T));
      pw2c[0] = 1;
      for(i=(1);i<(k);i++){
        pw2c[i] = 2 * pw2c[i-1];
      }
    }
    else{
      pw2c = (T*)realloc(pw2c, k * sizeof(T));
      for(i=(mem_pw2);i<(k);i++){
        pw2c[i] = 2 * pw2c[i-1];
      }
    }
    mem_pw2 = k;
  }
  inline void expand_ipw2(int k){
    int i;
    if(k <= mem_ipw2){
      return;
    }
    chmax(k, 2);
    chmax(k, 2 * mem_ipw2);
    if(mem_ipw2==0){
      ipw2c = (T*)malloc(k * sizeof(T));
      ipw2c[0] = 1;
      ipw2c[1] = ipw2c[0] / 2;
      for(i=(1);i<(k);i++){
        ipw2c[i] = ipw2c[1] * ipw2c[i-1];
      }
    }
    else{
      ipw2c = (T*)realloc(ipw2c, k * sizeof(T));
      for(i=(mem_ipw2);i<(k);i++){
        ipw2c[i] = ipw2c[1] * ipw2c[i-1];
      }
    }
    mem_ipw2 = k;
  }
  inline void expand_pw3(int k){
    int i;
    if(k <= mem_pw3){
      return;
    }
    chmax(k, 2 * mem_pw3);
    if(mem_pw3==0){
      pw3c = (T*)malloc(k * sizeof(T));
      pw3c[0] = 1;
      for(i=(1);i<(k);i++){
        pw3c[i] = 3 * pw3c[i-1];
      }
    }
    else{
      pw3c = (T*)realloc(pw3c, k * sizeof(T));
      for(i=(mem_pw3);i<(k);i++){
        pw3c[i] = 3 * pw3c[i-1];
      }
    }
    mem_pw3 = k;
  }
  inline void expand_ipw3(int k){
    int i;
    if(k <= mem_ipw3){
      return;
    }
    chmax(k, 2);
    chmax(k, 2 * mem_ipw3);
    if(mem_ipw3==0){
      ipw3c = (T*)malloc(k * sizeof(T));
      ipw3c[0] = 1;
      ipw3c[1] = ipw3c[0] / 3;
      for(i=(1);i<(k);i++){
        ipw3c[i] = ipw3c[1] * ipw3c[i-1];
      }
    }
    else{
      ipw3c = (T*)realloc(ipw3c, k * sizeof(T));
      for(i=(mem_ipw3);i<(k);i++){
        ipw3c[i] = ipw3c[1] * ipw3c[i-1];
      }
    }
    mem_ipw3 = k;
  }
  inline void expand_pw10(int k){
    int i;
    if(k <= mem_pw10){
      return;
    }
    chmax(k, 2 * mem_pw10);
    if(mem_pw10==0){
      pw10c = (T*)malloc(k * sizeof(T));
      pw10c[0] = 1;
      for(i=(1);i<(k);i++){
        pw10c[i] = 10 * pw10c[i-1];
      }
    }
    else{
      pw10c = (T*)realloc(pw10c, k * sizeof(T));
      for(i=(mem_pw10);i<(k);i++){
        pw10c[i] = 10 * pw10c[i-1];
      }
    }
    mem_pw10 = k;
  }
  inline void expand_ipw10(int k){
    int i;
    if(k <= mem_ipw10){
      return;
    }
    chmax(k, 2);
    chmax(k, 2 * mem_ipw10);
    if(mem_ipw10==0){
      ipw10c = (T*)malloc(k * sizeof(T));
      ipw10c[0] = 1;
      ipw10c[1] = ipw10c[0] / 10;
      for(i=(1);i<(k);i++){
        ipw10c[i] = ipw10c[1] * ipw10c[i-1];
      }
    }
    else{
      ipw10c = (T*)realloc(ipw10c, k * sizeof(T));
      for(i=(mem_ipw10);i<(k);i++){
        ipw10c[i] = ipw10c[1] * ipw10c[i-1];
      }
    }
    mem_ipw10 = k;
  }
  inline void expand_rep1(int k){
    int i;
    if(k <= mem_rep1){
      return;
    }
    chmax(k, 2 * mem_rep1);
    if(mem_rep1==0){
      rep1c = (T*)malloc(k * sizeof(T));
      rep1c[0] = 0;
      for(i=(1);i<(k);i++){
        rep1c[i] = 10 * rep1c[i-1] + 1;
      }
    }
    else{
      rep1c = (T*)realloc(rep1c, k * sizeof(T));
      for(i=(mem_rep1);i<(k);i++){
        rep1c[i] = 10 * rep1c[i-1] + 1;
      }
    }
    mem_rep1 = k;
  }
  inline T dfac(int k){
    if(k >= 0){
      if(mem_dfact < k+1){
        expand_dfact(k+1);
      }
      return dfactri[k];
    }
    if(k==-1){
      return 1;
    }
    k = - k - 2;
    if(k % 4 == 1){
      return 1 / (-dfac(k));
    }
    return 1 / dfac(k);
  }
  inline T pw2(int k){
    if(k >= 0){
      if(mem_pw2 < k+1){
        expand_pw2(k+1);
      }
      return pw2c[k];
    }
    else{
      k = -k;
      if(mem_ipw2 < k+1){
        expand_ipw2(k+1);
      }
      return ipw2c[k];
    }
  }
  inline T pw3(int k){
    if(k >= 0){
      if(mem_pw3 < k+1){
        expand_pw3(k+1);
      }
      return pw3c[k];
    }
    else{
      k = -k;
      if(mem_ipw3 < k+1){
        expand_ipw3(k+1);
      }
      return ipw3c[k];
    }
  }
  inline T pw10(int k){
    if(k >= 0){
      if(mem_pw10 < k+1){
        expand_pw10(k+1);
      }
      return pw10c[k];
    }
    else{
      k = -k;
      if(mem_ipw10 < k+1){
        expand_ipw10(k+1);
      }
      return ipw10c[k];
    }
  }
  inline T repunit(int k){
    if(mem_rep1 < k+1){
      expand_rep1(k+1);
    }
    return rep1c[k];
  }
}
;
template<> inline Modint Comb<Modint>::C_s(long long a, long long b){
  long long i;
  Modint res;
  Modint d;
  if(b < 0 || b > a){
    return 0;
  }
  if(b > a - b){
    b = a - b;
  }
  res = d = 1;
  for(i=(0);i<(b);i++){
    res *= a - i;
    d *= i + 1;
  }
  return res / d;
}
long long llReader(long long mn, long long mx, char nx){
  int i;
  int fg = 0;
  int m = 1;
  long long res = 0;
  double tmp = 0;
  for(;;){
    i = getchar();
    if(fg==0 && i=='-'){
      fg++;
      m = -1;
    }
    else if('0' <= i  &&  i <= '9'){
      fg++;
      res = 10 * res + i - '0';
      tmp = 10 * tmp + i - '0';
    }
    else{
      break;
    }
  }
  assert(tmp / 2 <= res);
  assert((m==1 && fg >= 1) || (m==-1 && fg >= 2));
  assert(mn <= res  &&  res <= mx);
  assert(i == nx);
  return res;
}
Comb<Modint> comb;
Modint solve(long long A, long long B, long long C, long long D){
  int i;
  Modint res = 0;
  if(A != B){
    return 0;
  }
  if(A==B && B==D && D==0){
    return 1;
  }
  for(i=(0);i<(A);i++){
    res += (i+1) * comb.C(2*A-2-i, A-1-i) / A * comb.H(2*A-i-1, D);
  }
  res *= comb.H(A+B+D+1,C);
  return res;
}
Modint baka(long long A, long long B, long long C, long long D){
  int i;
  int j;
  int k;
  int n = 0;
  int arr[100];
  int sz;
  int gen[200];
  Modint res = 0;
  for(i=(0);i<(A);i++){
    arr[n++] = 0;
  }
  for(i=(0);i<(B);i++){
    arr[n++] = 1;
  }
  for(i=(0);i<(C);i++){
    arr[n++] = 2;
  }
  for(i=(0);i<(D);i++){
    arr[n++] = 3;
  }
  do{
    sz = 0;
    for(i=(0);i<(n);i++){
      if(arr[i]==0){
        gen[sz++] = 1;
      }
      if(arr[i]==1){
        gen[sz++] = -1;
      }
      if(arr[i]==2){
        gen[sz++] = 1;
        gen[sz++] = -1;
      }
      if(arr[i]==3){
        gen[sz++] = -1;
        gen[sz++] = 1;
      }
    }
    k = 0;
    for(i=(0);i<(sz);i++){
      k += gen[i];
      if(k == -1){
        goto tU__gIr_;
      }
    }
    if(k==0){
      res++;
    }
    tU__gIr_:;
  }
  while(next_permutation(arr,arr+n));
  return res;
}
Modint solve2(long long A, long long B, long long C, long long D){
  Modint res = 0;
  if(A != B){
    return 0;
  }
  if(A==B && B==D && D==0){
    return 1;
  }
  return comb.C(2*A+D,A-1) * comb.C(A-1+D,A-1) * comb.H(A+B+D+1,C) / A;
}
int main(){
  wmem = memarr;
  long long A;
  long long B;
  long long C;
  long long D;
  Modint res = 0;
  A = llReader(0, 100000, ' ');
  B = llReader(0, 100000, ' ');
  C = llReader(0, 100000, ' ');
  D = llReader(0, 100000, '\n');
  assert(A+B+C+D >= 1);
  assert(getchar() == EOF);
  wt_L(solve2(A,B,C,D));
  wt_L('\n');
  return 0;
  puts("");
  for(A=(0);A<(7);A++){
    for(B=(0);B<(7);B++){
      for(C=(0);C<(7);C++){
        for(D=(0);D<(7);D++){
          Modint res1;
          Modint res2;
          res1 = solve(A,B,C,D);
          res2 = solve2(A,B,C,D);
          wt_L(A);
          wt_L(' ');
          wt_L(B);
          wt_L(' ');
          wt_L(C);
          wt_L(' ');
          wt_L(D);
          wt_L(' ');
          wt_L(":");
          wt_L(' ');
          wt_L(res1);
          wt_L(' ');
          wt_L(res2);
          wt_L('\n');
          assert(res1==res2);
        }
      }
    }
  }
  res = solve(A,B,C,D);
  wt_L(res);
  wt_L('\n');
  return 0;
}
// cLay version 20210717-1 [beta]

// --- original code ---
// ll llReader(ll mn, ll mx, char nx){
//   int i, fg = 0, m = 1;
//   ll res = 0; double tmp = 0;
// 
//   for(;;){
//     i = getchar();
//     if(fg==0 && i=='-'){
//       fg++;
//       m = -1;
//     } else if('0' <= i <= '9'){
//       fg++;
//       res = 10 * res + i - '0';
//       tmp = 10 * tmp + i - '0';
//     } else {
//       break;
//     }
//   }
//   assert(tmp / 2 <= res);
//   assert((m==1 && fg >= 1) || (m==-1 && fg >= 2));
//   assert(mn <= res <= mx);
//   assert(i == nx);
//   return res;
// }
// 
// Comb<Modint> comb;
// Modint solve(ll A, ll B, ll C, ll D){
//   Modint res = 0;
//   if(A != B) return 0;
//   if(A==B==D==0) return 1;
//   rep(i,A) res += (i+1) * comb.C(2*A-2-i, A-1-i) / A * comb.H(2*A-i-1, D);
//   res *= comb.H(A+B+D+1,C);
//   return res;
// }
// 
// Modint baka(ll A, ll B, ll C, ll D){
//   int i, j, k, n = 0, arr[100], sz, gen[200];
//   Modint res = 0;
//   rep(i,A) arr[n++] = 0;
//   rep(i,B) arr[n++] = 1;
//   rep(i,C) arr[n++] = 2;
//   rep(i,D) arr[n++] = 3;
//   do{
//     sz = 0;
//     rep(i,n){
//       if(arr[i]==0) gen[sz++] = 1;
//       if(arr[i]==1) gen[sz++] = -1;
//       if(arr[i]==2) gen[sz++] = 1, gen[sz++] = -1;
//       if(arr[i]==3) gen[sz++] = -1, gen[sz++] = 1;
//     }
//     k = 0;
//     rep(i,sz){
//       k += gen[i];
//       if(k == -1) break_continue;
//     }
//     if(k==0) res++;
//   }while(next_permutation(arr,arr+n));
//   return res;
// }
// 
// Modint solve2(ll A, ll B, ll C, ll D){
//   Modint res = 0;
//   if(A != B) return 0;
//   if(A==B==D==0) return 1;
//   return comb.C(2*A+D,A-1) * comb.C(A-1+D,A-1) * comb.H(A+B+D+1,C) / A;
// }
// 
// {
//   ll A, B, C, D;
//   Modint res = 0;
//   A = llReader(0, 1d5, ' ');
//   B = llReader(0, 1d5, ' ');
//   C = llReader(0, 1d5, ' ');
//   D = llReader(0, 1d5, '\n');
//   assert(A+B+C+D >= 1);
//   assert(getchar() == EOF);
// 
//   wt(solve2(A,B,C,D));
//   return 0;
// 
//   puts("");
//   rep(A,7) rep(B,7) rep(C,7) rep(D,7){
//     Modint res1, res2;
//     res1 = solve(A,B,C,D);
//     res2 = solve2(A,B,C,D);
//     wt(A,B,C,D,":",res1,res2);
//     assert(res1==res2);
//   }
// 
// 
//   res = solve(A,B,C,D);
//   wt(res);
// }
0