結果

問題 No.1620 Substring Sum
ユーザー LayCurse
提出日時 2021-07-22 21:29:15
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 12 ms / 2,000 ms
コード長 16,757 bytes
コンパイル時間 2,189 ms
コンパイル使用メモリ 220,152 KB
最終ジャッジ日時 2025-01-23 06:07:38
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 20
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("inline")
#include<bits/stdc++.h>
using namespace std;
#define MD (998244353U)
void*wmem;
char memarr[96000000];
template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){
static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
(*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] );
(*arr)=(T*)(*mem);
(*mem)=((*arr)+x);
}
template<class T> inline void walloc1d(T **arr, int x1, int x2, void **mem = &wmem){
walloc1d(arr, x2-x1, mem);
(*arr) -= x1;
}
struct Modint{
unsigned val;
Modint(){
val=0;
}
Modint(int a){
val = ord(a);
}
Modint(unsigned a){
val = ord(a);
}
Modint(long long a){
val = ord(a);
}
Modint(unsigned long long a){
val = ord(a);
}
inline unsigned ord(unsigned a){
return a%MD;
}
inline unsigned ord(int a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned ord(unsigned long long a){
return a%MD;
}
inline unsigned ord(long long a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned get(){
return val;
}
inline Modint &operator++(){
val++;
if(val >= MD){
val -= MD;
}
return *this;
}
inline Modint &operator--(){
if(val == 0){
val = MD - 1;
}
else{
--val;
}
return *this;
}
inline Modint operator++(int a){
Modint res(*this);
val++;
if(val >= MD){
val -= MD;
}
return res;
}
inline Modint operator--(int a){
Modint res(*this);
if(val == 0){
val = MD - 1;
}
else{
--val;
}
return res;
}
inline Modint &operator+=(Modint a){
val += a.val;
if(val >= MD){
val -= MD;
}
return *this;
}
inline Modint &operator-=(Modint a){
if(val < a.val){
val = val + MD - a.val;
}
else{
val -= a.val;
}
return *this;
}
inline Modint &operator*=(Modint a){
val = ((unsigned long long)val*a.val)%MD;
return *this;
}
inline Modint &operator/=(Modint a){
return *this *= a.inverse();
}
inline Modint operator+(Modint a){
return Modint(*this)+=a;
}
inline Modint operator-(Modint a){
return Modint(*this)-=a;
}
inline Modint operator*(Modint a){
return Modint(*this)*=a;
}
inline Modint operator/(Modint a){
return Modint(*this)/=a;
}
inline Modint operator+(int a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(int a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(int a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(int a){
return Modint(*this)/=Modint(a);
}
inline Modint operator+(long long a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(long long a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(long long a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(long long a){
return Modint(*this)/=Modint(a);
}
inline Modint operator-(void){
Modint res;
if(val){
res.val=MD-val;
}
else{
res.val=0;
}
return res;
}
inline operator bool(void){
return val!=0;
}
inline operator int(void){
return get();
}
inline operator long long(void){
return get();
}
inline Modint inverse(){
int a = val;
int b = MD;
int u = 1;
int v = 0;
int t;
Modint res;
while(b){
t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
if(u < 0){
u += MD;
}
res.val = u;
return res;
}
inline Modint pw(unsigned long long b){
Modint a(*this);
Modint res;
res.val = 1;
while(b){
if(b&1){
res *= a;
}
b >>= 1;
a *= a;
}
return res;
}
inline bool operator==(int a){
return ord(a)==val;
}
inline bool operator!=(int a){
return ord(a)!=val;
}
}
;
inline Modint operator+(int a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(int a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(int a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(int a, Modint b){
return Modint(a)/=b;
}
inline Modint operator+(long long a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(long long a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(long long a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(long long a, Modint b){
return Modint(a)/=b;
}
inline int my_getchar_unlocked(){
static char buf[1048576];
static int s = 1048576;
static int e = 1048576;
if(s == e && e == 1048576){
e = fread_unlocked(buf, 1, 1048576, stdin);
s = 0;
}
if(s == e){
return EOF;
}
return buf[s++];
}
inline void rd(char &c){
int i;
for(;;){
i = my_getchar_unlocked();
if(i!=' '&&i!='\n'&&i!='\r'&&i!='\t'&&i!=EOF){
break;
}
}
c = i;
}
inline int rd(char c[]){
int i;
int sz = 0;
for(;;){
i = my_getchar_unlocked();
if(i!=' '&&i!='\n'&&i!='\r'&&i!='\t'&&i!=EOF){
break;
}
}
c[sz++] = i;
for(;;){
i = my_getchar_unlocked();
if(i==' '||i=='\n'||i=='\r'||i=='\t'||i==EOF){
break;
}
c[sz++] = i;
}
c[sz]='\0';
return sz;
}
struct MY_WRITER{
char buf[1048576];
int s;
int e;
MY_WRITER(){
s = 0;
e = 1048576;
}
~MY_WRITER(){
if(s){
fwrite_unlocked(buf, 1, s, stdout);
}
}
}
;
MY_WRITER MY_WRITER_VAR;
void my_putchar_unlocked(int a){
if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){
fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout);
MY_WRITER_VAR.s = 0;
}
MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a;
}
inline void wt_L(char a){
my_putchar_unlocked(a);
}
inline void wt_L(int x){
int s=0;
int m=0;
char f[10];
if(x<0){
m=1;
x=-x;
}
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
if(m){
my_putchar_unlocked('-');
}
while(s--){
my_putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(Modint x){
int i;
i = (int)x;
wt_L(i);
}
template<class S, class T> inline S chmax(S &a, T b){
if(a<b){
a=b;
}
return a;
}
template<class T> struct Comb{
int mem_fact;
T*factri;
T*ifactri;
int mem_dfact;
T*dfactri;
int mem_pw2;
int mem_pw3;
int mem_pw10;
int mem_rep1;
T*pw2c;
T*pw3c;
T*pw10c;
T*rep1c;
int mem_ipw2;
int mem_ipw3;
int mem_ipw10;
T*ipw2c;
T*ipw3c;
T*ipw10c;
Comb(){
mem_fact = 0;
mem_dfact = 0;
mem_pw2 = mem_pw3 = mem_pw10 = mem_rep1 = 0;
mem_ipw2 = mem_ipw3 = mem_ipw10 = 0;
}
inline void expand_fact(int k){
int i;
if(k <= mem_fact){
return;
}
chmax(k, 2 * mem_fact);
if(mem_fact == 0){
factri = (T*)malloc(k * sizeof(T));
ifactri = (T*)malloc(k * sizeof(T));
factri[0] = 1;
for(i=(1);i<(k);i++){
factri[i] = i * factri[i-1];
}
ifactri[k-1] = 1 / factri[k-1];
for(i=(k-1)-1;i>=(0);i--){
ifactri[i] = (i+1) * ifactri[i+1];
}
}
else{
factri = (T*)realloc(factri, k * sizeof(T));
ifactri = (T*)realloc(ifactri, k * sizeof(T));
for(i=(mem_fact);i<(k);i++){
factri[i] = i * factri[i-1];
}
ifactri[k-1] = 1 / factri[k-1];
for(i=(k-1)-1;i>=(mem_fact);i--){
ifactri[i] = (i+1) * ifactri[i+1];
}
}
mem_fact = k;
}
inline T fac(int k){
if(mem_fact < k+1){
expand_fact(k+1);
}
return factri[k];
}
inline T ifac(int k){
if(mem_fact < k+1){
expand_fact(k+1);
}
return ifactri[k];
}
inline T C(int a, int b){
if(b < 0 || b > a){
return 0;
}
if(mem_fact < a+1){
expand_fact(a+1);
}
return factri[a] * ifactri[b] * ifactri[a-b];
}
inline T P(int a, int b){
if(b < 0 || b > a){
return 0;
}
if(mem_fact < a+1){
expand_fact(a+1);
}
return factri[a] * ifactri[a-b];
}
inline T H(int a, int b){
if(a==0 && b==0){
return 1;
}
if(a <= 0 || b < 0){
return 0;
}
if(mem_fact < a+b){
expand_fact(a+b);
}
return C(a+b-1, b);
}
inline T Multinomial(int sz, int a[]){
int i;
int s = 0;
T res;
for(i=(0);i<(sz);i++){
s += a[i];
}
if(mem_fact < s+1){
expand_fact(s+1);
}
res = factri[s];
for(i=(0);i<(sz);i++){
res *= ifactri[a[i]];
}
return res;
}
inline T Multinomial(int a){
return 1;
}
inline T Multinomial(int a, int b){
if(mem_fact < a+b+1){
expand_fact(a+b+1);
}
return factri[a+b] * ifactri[a] * ifactri[b];
}
inline T Multinomial(int a, int b, int c){
if(mem_fact < a+b+c+1){
expand_fact(a+b+c+1);
}
return factri[a+b+c] * ifactri[a] * ifactri[b] * ifactri[c];
}
inline T Multinomial(int a, int b, int c, int d){
if(mem_fact < a+b+c+d+1){
expand_fact(a+b+c+d+1);
}
return factri[a+b+c+d] * ifactri[a] * ifactri[b] * ifactri[c] * ifactri[d];
}
inline T Catalan(int n){
if(n < 0){
return 0;
}
if(mem_fact < 2*n+1){
expand_fact(2*n+1);
}
return factri[2*n] * ifactri[n] * ifactri[n+1];
}
inline T Catalan(int n, int m, int k){
if(k <= 0){
return C(n+m, n);
}
if(n < k || m < k){
return 0;
}
return C(n+m, m) - C(n+m, k-1);
}
inline T Catalan_s(long long n, long long m, long long k){
if(k <= 0){
return C_s(n+m, n);
}
if(n < k || m < k){
return 0;
}
return C_s(n+m, m) - C_s(n+m, k-1);
}
inline T C_s(long long a, long long b){
long long i;
T res;
if(b < 0 || b > a){
return 0;
}
if(b > a - b){
b = a - b;
}
res = 1;
for(i=(0);i<(b);i++){
res *= a - i;
res /= i + 1;
}
return res;
}
inline T P_s(long long a, long long b){
long long i;
T res;
if(b < 0 || b > a){
return 0;
}
res = 1;
for(i=(0);i<(b);i++){
res *= a - i;
}
return res;
}
inline T H_s(long long a, long long b){
if(a==0 && b==0){
return 1;
}
if(a <= 0 || b < 0){
return 0;
}
return C_s(a+b-1, b);
}
inline T per_s(long long n, long long k){
T d;
int m;
if(n < 0 || k < 0){
return 0;
}
if(n == k && k == 0){
return 1;
}
if(n == 0 || k == 0){
return 0;
}
if(k==1){
return 1;
}
if(k==2){
d = n / 2;
return d;
}
if(k==3){
d = (n-1) / 6;
m = (n-1) % 6;
if(m==0){
return 3 * d * d + d;
}
if(m==1){
return 3 * d * d + 2 * d;
}
if(m==2){
return 3 * d * d + 3 * d + 1;
}
if(m==3){
return 3 * d * d + 4 * d + 1;
}
if(m==4){
return 3 * d * d + 5 * d + 2;
}
if(m==5){
return 3 * d * d + 6 * d + 3;
}
}
assert(0 && "per_s should be k <= 3");
return -1;
}
inline void expand_dfact(int k){
int i;
if(k <= mem_dfact){
return;
}
chmax(k, 3);
chmax(k, 2 * mem_dfact);
if(mem_dfact==0){
dfactri = (T*)malloc(k * sizeof(T));
dfactri[0] = dfactri[1] = 1;
for(i=(2);i<(k);i++){
dfactri[i] = i * dfactri[i-2];
}
}
else{
dfactri = (T*)realloc(dfactri, k * sizeof(T));
for(i=(mem_dfact);i<(k);i++){
dfactri[i] = i * dfactri[i-2];
}
}
mem_dfact = k;
}
inline void expand_pw2(int k){
int i;
if(k <= mem_pw2){
return;
}
chmax(k, 2 * mem_pw2);
if(mem_pw2==0){
pw2c = (T*)malloc(k * sizeof(T));
pw2c[0] = 1;
for(i=(1);i<(k);i++){
pw2c[i] = 2 * pw2c[i-1];
}
}
else{
pw2c = (T*)realloc(pw2c, k * sizeof(T));
for(i=(mem_pw2);i<(k);i++){
pw2c[i] = 2 * pw2c[i-1];
}
}
mem_pw2 = k;
}
inline void expand_ipw2(int k){
int i;
if(k <= mem_ipw2){
return;
}
chmax(k, 2);
chmax(k, 2 * mem_ipw2);
if(mem_ipw2==0){
ipw2c = (T*)malloc(k * sizeof(T));
ipw2c[0] = 1;
ipw2c[1] = ipw2c[0] / 2;
for(i=(1);i<(k);i++){
ipw2c[i] = ipw2c[1] * ipw2c[i-1];
}
}
else{
ipw2c = (T*)realloc(ipw2c, k * sizeof(T));
for(i=(mem_ipw2);i<(k);i++){
ipw2c[i] = ipw2c[1] * ipw2c[i-1];
}
}
mem_ipw2 = k;
}
inline void expand_pw3(int k){
int i;
if(k <= mem_pw3){
return;
}
chmax(k, 2 * mem_pw3);
if(mem_pw3==0){
pw3c = (T*)malloc(k * sizeof(T));
pw3c[0] = 1;
for(i=(1);i<(k);i++){
pw3c[i] = 3 * pw3c[i-1];
}
}
else{
pw3c = (T*)realloc(pw3c, k * sizeof(T));
for(i=(mem_pw3);i<(k);i++){
pw3c[i] = 3 * pw3c[i-1];
}
}
mem_pw3 = k;
}
inline void expand_ipw3(int k){
int i;
if(k <= mem_ipw3){
return;
}
chmax(k, 2);
chmax(k, 2 * mem_ipw3);
if(mem_ipw3==0){
ipw3c = (T*)malloc(k * sizeof(T));
ipw3c[0] = 1;
ipw3c[1] = ipw3c[0] / 3;
for(i=(1);i<(k);i++){
ipw3c[i] = ipw3c[1] * ipw3c[i-1];
}
}
else{
ipw3c = (T*)realloc(ipw3c, k * sizeof(T));
for(i=(mem_ipw3);i<(k);i++){
ipw3c[i] = ipw3c[1] * ipw3c[i-1];
}
}
mem_ipw3 = k;
}
inline void expand_pw10(int k){
int i;
if(k <= mem_pw10){
return;
}
chmax(k, 2 * mem_pw10);
if(mem_pw10==0){
pw10c = (T*)malloc(k * sizeof(T));
pw10c[0] = 1;
for(i=(1);i<(k);i++){
pw10c[i] = 10 * pw10c[i-1];
}
}
else{
pw10c = (T*)realloc(pw10c, k * sizeof(T));
for(i=(mem_pw10);i<(k);i++){
pw10c[i] = 10 * pw10c[i-1];
}
}
mem_pw10 = k;
}
inline void expand_ipw10(int k){
int i;
if(k <= mem_ipw10){
return;
}
chmax(k, 2);
chmax(k, 2 * mem_ipw10);
if(mem_ipw10==0){
ipw10c = (T*)malloc(k * sizeof(T));
ipw10c[0] = 1;
ipw10c[1] = ipw10c[0] / 10;
for(i=(1);i<(k);i++){
ipw10c[i] = ipw10c[1] * ipw10c[i-1];
}
}
else{
ipw10c = (T*)realloc(ipw10c, k * sizeof(T));
for(i=(mem_ipw10);i<(k);i++){
ipw10c[i] = ipw10c[1] * ipw10c[i-1];
}
}
mem_ipw10 = k;
}
inline void expand_rep1(int k){
int i;
if(k <= mem_rep1){
return;
}
chmax(k, 2 * mem_rep1);
if(mem_rep1==0){
rep1c = (T*)malloc(k * sizeof(T));
rep1c[0] = 0;
for(i=(1);i<(k);i++){
rep1c[i] = 10 * rep1c[i-1] + 1;
}
}
else{
rep1c = (T*)realloc(rep1c, k * sizeof(T));
for(i=(mem_rep1);i<(k);i++){
rep1c[i] = 10 * rep1c[i-1] + 1;
}
}
mem_rep1 = k;
}
inline T dfac(int k){
if(k >= 0){
if(mem_dfact < k+1){
expand_dfact(k+1);
}
return dfactri[k];
}
if(k==-1){
return 1;
}
k = - k - 2;
if(k % 4 == 1){
return 1 / (-dfac(k));
}
return 1 / dfac(k);
}
inline T pw2(int k){
if(k >= 0){
if(mem_pw2 < k+1){
expand_pw2(k+1);
}
return pw2c[k];
}
else{
k = -k;
if(mem_ipw2 < k+1){
expand_ipw2(k+1);
}
return ipw2c[k];
}
}
inline T pw3(int k){
if(k >= 0){
if(mem_pw3 < k+1){
expand_pw3(k+1);
}
return pw3c[k];
}
else{
k = -k;
if(mem_ipw3 < k+1){
expand_ipw3(k+1);
}
return ipw3c[k];
}
}
inline T pw10(int k){
if(k >= 0){
if(mem_pw10 < k+1){
expand_pw10(k+1);
}
return pw10c[k];
}
else{
k = -k;
if(mem_ipw10 < k+1){
expand_ipw10(k+1);
}
return ipw10c[k];
}
}
inline T repunit(int k){
if(mem_rep1 < k+1){
expand_rep1(k+1);
}
return rep1c[k];
}
}
;
template<> inline Modint Comb<Modint>::C_s(long long a, long long b){
long long i;
Modint res;
Modint d;
if(b < 0 || b > a){
return 0;
}
if(b > a - b){
b = a - b;
}
res = d = 1;
for(i=(0);i<(b);i++){
res *= a - i;
d *= i + 1;
}
return res / d;
}
int N;
char S[200000+2];
Comb<Modint> c;
int main(){
int i;
wmem = memarr;
Modint res = 0;
Modint m = 1;
N = rd(S);
for(i=(0);i<(N);i++){
res = res * 11 + m * (S[i] - '0');
m *= 2;
}
wt_L(res);
wt_L('\n');
return 0;
}
// cLay version 20210717-1 [beta]
// --- original code ---
// #define MD 998244353
// int N;
// char S[2d5+2];
// Comb<Modint> c;
// {
// Modint res = 0, m = 1;
// rd(S@N);
// rep(i,N){
// res = res * 11 + m * (S[i] - '0');
// m *= 2;
// }
// wt(res);
// }
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0