結果
問題 | No.1619 Coccinellidae |
ユーザー | takytank |
提出日時 | 2021-07-22 22:36:44 |
言語 | C# (.NET 8.0.203) |
結果 |
TLE
|
実行時間 | - |
コード長 | 43,551 bytes |
コンパイル時間 | 18,426 ms |
コンパイル使用メモリ | 170,392 KB |
実行使用メモリ | 55,152 KB |
最終ジャッジ日時 | 2024-07-17 18:52:57 |
合計ジャッジ時間 | 15,678 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 61 ms
32,896 KB |
testcase_01 | AC | 392 ms
55,152 KB |
testcase_02 | TLE | - |
testcase_03 | -- | - |
testcase_04 | -- | - |
testcase_05 | -- | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
コンパイルメッセージ
復元対象のプロジェクトを決定しています... /home/judge/data/code/main.csproj を復元しました (96 ms)。 MSBuild のバージョン 17.9.6+a4ecab324 (.NET) main -> /home/judge/data/code/bin/Release/net8.0/main.dll main -> /home/judge/data/code/bin/Release/net8.0/publish/
ソースコード
using System; using System.Collections; using System.Collections.Generic; using System.Diagnostics; using System.Globalization; using System.IO; using System.Linq; using System.Numerics; using System.Runtime.CompilerServices; using System.Runtime.InteropServices; using System.Text; namespace YukiCoder { class Program { static void Main() { using var cin = new Scanner(); int n = cin.Int(); var (m, k) = cin.Long2(); var nums = new long[n]; long mm = m; for (int i = 0; i < n; i++) { nums[i] = i; mm -= i; } long div = mm / n; long rem = mm % n; for (int i = 0; i < n; i++) { nums[i] += div; if (i >= n - rem) { nums[i] += 1; } } nums = nums.OrderBy(i => Guid.NewGuid()).ToArray(); var set = new RedBlackTree<long>(); for (int i = 0; i < n; i++) { set.Add(nums[i]); } var ans = new long[n]; for (int i = n - 1; i >= 0; i--) { if (k > 0 && k >= i) { ans[i] = set[set.Count - 1 - i]; set.Remove(ans[i]); k -= i; } else { ans[i] = set.Max(); set.RemoveAt(set.Count - 1); } } Console.WriteLine(ans.JoinNL()); } } public class RedBlackTree<T> : ICollection<T>, IReadOnlyCollection<T> where T : IComparable<T> { private readonly bool isMulti_; private readonly Stack<Node> pool_ = new Stack<Node>(); private Node root_; public RedBlackTree(bool isMulti = false) { isMulti_ = isMulti; } public RedBlackTree(IEnumerable<T> collection, bool isMulti = false) { isMulti_ = isMulti; var arr = InitializeArray(collection); root_ = ConstructRootFromSortedArray(arr, 0, arr.Length - 1, null); } public T this[int index] => Find(index); public int Count => CountOf(root_); public T Min { get { if (root_ is null) { return default; } var cur = root_; while (cur.Left is null == false) { cur = cur.Left; } return cur.Item; } } public T Max { get { if (root_ is null) { return default; } var cur = root_; while (cur.Right is null == false) { cur = cur.Right; } return cur.Item; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public bool Contains(T item) => FindNode(item) is null == false; [MethodImpl(MethodImplOptions.AggressiveInlining)] public int IndexOf(T item) => Index(FindNode(item)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public T Find(int index) { var node = FindNodeByIndex(index); return node is null == false ? node.Item : default; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Add(T item) { if (root_ is null) { root_ = NewNode(item, false); return; } Node current = root_; Node parent = null; Node grandParent = null; Node greatGrandParent = null; int order = 0; while (current is null == false) { order = item.CompareTo(current.Item); if (order == 0 && isMulti_ == false) { root_.IsRed = false; return; } if (current.Is4Node()) { current.Split4Node(); if (Node.IsNonNullRed(parent) == true) { InsertionBalance(current, ref parent, grandParent, greatGrandParent); } } greatGrandParent = grandParent; grandParent = parent; parent = current; current = (order < 0) ? current.Left : current.Right; } Node node = NewNode(item, true); if (order >= 0) { parent.Right = node; } else { parent.Left = node; } if (parent.IsRed) { InsertionBalance(node, ref parent, grandParent, greatGrandParent); } root_.IsRed = false; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public bool RemoveAt(int index) => Remove(FindNodeByIndex(index).Item); [MethodImpl(MethodImplOptions.AggressiveInlining)] public bool Remove(T item) { if (root_ is null) { return false; } Node current = root_; Node parent = null; Node grandParent = null; Node match = null; Node parentOfMatch = null; bool foundMatch = false; while (current is null == false) { if (current.Is2Node()) { if (parent is null) { current.IsRed = true; } else { Node sibling = parent.GetSibling(current); if (sibling.IsRed) { if (parent.Right == sibling) { parent.RotateLeft(); } else { parent.RotateRight(); } parent.IsRed = true; sibling.IsRed = false; ReplaceChildOrRoot(grandParent, parent, sibling); grandParent = sibling; if (parent == match) { parentOfMatch = sibling; } sibling = (parent.Left == current) ? parent.Right : parent.Left; } if (sibling.Is2Node()) { parent.Merge2Nodes(); } else { TreeRotation rotation = parent.GetRotation(current, sibling); Node newGrandParent = parent.Rotate(rotation); newGrandParent.IsRed = parent.IsRed; parent.IsRed = false; current.IsRed = true; ReplaceChildOrRoot(grandParent, parent, newGrandParent); if (parent == match) { parentOfMatch = newGrandParent; } } } } int order = foundMatch ? -1 : item.CompareTo(current.Item); if (order == 0) { foundMatch = true; match = current; parentOfMatch = parent; } grandParent = parent; parent = current; current = order < 0 ? current.Left : current.Right; } if (match is null == false) { ReplaceNode(match, parentOfMatch, parent, grandParent); match.Clear(); pool_.Push(match); } if (root_ is null == false) { root_.IsRed = false; } return foundMatch; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Clear() { root_ = null; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public void CopyTo(T[] array, int arrayIndex) { foreach (var item in this) { array[arrayIndex++] = item; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public (int index, T value) Prev((int index, T value) node) => (node.index - 1, Find(node.index - 1)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (int index, T value) Next((int index, T value) node) => (node.index + 1, Find(node.index + 1)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (int index, T value) LowerBound(T item) => BinarySearch(item, true); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (int index, T value) UpperBound(T item) => BinarySearch(item, false); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (int index, T value) BinarySearch(T item, bool isLowerBound) { Node right = null; int ri = -1; Node current = root_; if (current is null) { return (ri, default); } ri = 0; while (current is null == false) { var order = item.CompareTo(current.Item); if (order < 0 || (isLowerBound && order == 0)) { right = current; current = current.Left; } else { ri += CountOf(current.Left) + 1; current = current.Right; } } return right is null == false ? (ri, right.Item) : (ri, default); } [MethodImpl(MethodImplOptions.AggressiveInlining)] private static int CountOf(Node node) => node is null ? 0 : node.Size; [MethodImpl(MethodImplOptions.AggressiveInlining)] private Node NewNode(T item, bool isRed) { if (pool_.Count > 0) { var node = pool_.Pop(); node.Item = item; node.IsRed = isRed; return node; } else { return new Node(item, isRed); } } [MethodImpl(MethodImplOptions.AggressiveInlining)] private Node FindNode(T item) { Node current = root_; while (current is null == false) { int cmp = item.CompareTo(current.Item); if (cmp == 0) { return current; } current = cmp < 0 ? current.Left : current.Right; } return null; } [MethodImpl(MethodImplOptions.AggressiveInlining)] private int Index(Node node) { if (node is null) { return -1; } var ret = CountOf(node.Left); Node prev = node; node = node.Parent; while (prev != root_) { if (node.Left != prev) { ret += CountOf(node.Left) + 1; } prev = node; node = node.Parent; } return ret; } [MethodImpl(MethodImplOptions.AggressiveInlining)] private Node FindNodeByIndex(int index) { var current = root_; var currentIndex = current.Size - CountOf(current.Right) - 1; while (currentIndex != index) { if (currentIndex > index) { current = current.Left; if (current is null) { break; } currentIndex -= CountOf(current.Right) + 1; } else { current = current.Right; if (current is null) { break; } currentIndex += CountOf(current.Left) + 1; } } return current; } [MethodImpl(MethodImplOptions.AggressiveInlining)] private T[] InitializeArray(IEnumerable<T> collection) { T[] array; if (isMulti_) { array = collection.ToArray(); Array.Sort(array, (x, y) => x.CompareTo(y)); } else { var list = new List<T>(collection); list.Sort((x, y) => x.CompareTo(y)); for (int i = list.Count - 1; i > 0; i--) { if (list[i - 1].CompareTo(list[i]) == 0) { list.RemoveAt(i); } } array = list.ToArray(); } return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] private Node ConstructRootFromSortedArray(T[] arr, int startIndex, int endIndex, Node redNode) { int size = endIndex - startIndex + 1; Node root; switch (size) { case 0: return null; case 1: root = NewNode(arr[startIndex], false); if (redNode is null == false) { root.Left = redNode; } break; case 2: root = NewNode(arr[startIndex], false); root.Right = NewNode(arr[endIndex], true); if (redNode is null == false) { root.Left = redNode; } break; case 3: root = NewNode(arr[startIndex + 1], false); root.Left = NewNode(arr[startIndex], false); root.Right = NewNode(arr[endIndex], false); if (redNode is null == false) { root.Left.Left = redNode; } break; default: int midpt = ((startIndex + endIndex) / 2); root = NewNode(arr[midpt], false); root.Left = ConstructRootFromSortedArray(arr, startIndex, midpt - 1, redNode); root.Right = size % 2 == 0 ? ConstructRootFromSortedArray(arr, midpt + 2, endIndex, NewNode(arr[midpt + 1], true)) : ConstructRootFromSortedArray(arr, midpt + 1, endIndex, null); break; } return root; } [MethodImpl(MethodImplOptions.AggressiveInlining)] private void ReplaceNode(Node match, Node parentOfMatch, Node succesor, Node parentOfSuccesor) { if (succesor == match) { succesor = match.Left; } else { if (succesor.Right is null == false) { succesor.Right.IsRed = false; } if (parentOfSuccesor != match) { parentOfSuccesor.Left = succesor.Right; succesor.Right = match.Right; } succesor.Left = match.Left; } if (succesor is null == false) { succesor.IsRed = match.IsRed; } ReplaceChildOrRoot(parentOfMatch, match, succesor); } [MethodImpl(MethodImplOptions.AggressiveInlining)] private void InsertionBalance(Node current, ref Node parent, Node grandParent, Node greatGrandParent) { bool parentIsOnRight = grandParent.Right == parent; bool currentIsOnRight = parent.Right == current; Node newChildOfGreatGrandParent; if (parentIsOnRight == currentIsOnRight) { newChildOfGreatGrandParent = currentIsOnRight ? grandParent.RotateLeft() : grandParent.RotateRight(); } else { newChildOfGreatGrandParent = currentIsOnRight ? grandParent.RotateLeftRight() : grandParent.RotateRightLeft(); parent = greatGrandParent; } grandParent.IsRed = true; newChildOfGreatGrandParent.IsRed = false; ReplaceChildOrRoot(greatGrandParent, grandParent, newChildOfGreatGrandParent); } [MethodImpl(MethodImplOptions.AggressiveInlining)] private void ReplaceChildOrRoot(Node parent, Node child, Node newChild) { if (parent is null == false) { if (parent.Left == child) { parent.Left = newChild; } else { parent.Right = newChild; } } else { root_ = newChild; } } bool ICollection<T>.IsReadOnly => false; public IEnumerable<T> Reverse() { var e = new Enumerator(this, true); while (e.MoveNext()) { yield return e.Current; } } public Enumerator GetEnumerator() => new Enumerator(this); IEnumerator<T> IEnumerable<T>.GetEnumerator() => new Enumerator(this); System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator() => new Enumerator(this); private class Node { public bool IsRed { get; set; } public T Item { get; set; } public Node Parent { get; private set; } private Node _Left; public Node Left { get => _Left; set { _Left = value; Update(value); } } private Node _Right; public Node Right { get => _Right; set { _Right = value; Update(value); } } public int Size { get; private set; } = 1; public Node(T item, bool isRed) { Item = item; IsRed = isRed; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Clear() { Parent = null; _Left = null; _Right = null; Size = 1; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Update(Node child) { if (child is null == false) { child.Parent = this; } for (var cur = this; cur is null == false; cur = cur.Parent) { if (!cur.UpdateSize()) { break; } if (cur.Parent is null == false && cur.Parent.Left != cur && cur.Parent.Right != cur) { cur.Parent = null; return; } } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public bool UpdateSize() { var oldsize = Size; var size = 1; if (Left is null == false) { size += Left.Size; } if (Right is null == false) { size += Right.Size; } Size = size; return oldsize != size; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static bool IsNonNullRed(Node node) => node is null == false && node.IsRed; [MethodImpl(MethodImplOptions.AggressiveInlining)] public static bool IsNonNullBlack(Node node) => node is null == false && node.IsRed == false; [MethodImpl(MethodImplOptions.AggressiveInlining)] public static bool IsNullOrBlack(Node node) => node is null || node.IsRed == false; [MethodImpl(MethodImplOptions.AggressiveInlining)] public bool Is2Node() => IsRed == false && IsNullOrBlack(Left) && IsNullOrBlack(Right); [MethodImpl(MethodImplOptions.AggressiveInlining)] public bool Is4Node() => IsNonNullRed(Left) && IsNonNullRed(Right); [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Merge2Nodes() { IsRed = false; Left.IsRed = true; Right.IsRed = true; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Split4Node() { IsRed = true; Left.IsRed = false; Right.IsRed = false; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public TreeRotation GetRotation(Node current, Node sibling) { if (IsNonNullRed(sibling.Left)) { if (Left == current) { return TreeRotation.RightLeft; } return TreeRotation.Right; } else { if (Left == current) { return TreeRotation.Left; } return TreeRotation.LeftRight; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public Node GetSibling(Node node) { return Left == node ? Right : Left; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public Node Rotate(TreeRotation rotation) { switch (rotation) { default: case TreeRotation.Right: Left.Left.IsRed = false; return RotateRight(); case TreeRotation.Left: Right.Right.IsRed = false; return RotateLeft(); case TreeRotation.RightLeft: return RotateRightLeft(); case TreeRotation.LeftRight: return RotateLeftRight(); } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public Node RotateLeft() { Node child = Right; Right = child.Left; child.Left = this; return child; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public Node RotateLeftRight() { Node child = Left; Node grandChild = child.Right; Left = grandChild.Right; grandChild.Right = this; child.Right = grandChild.Left; grandChild.Left = child; return grandChild; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public Node RotateRight() { Node child = Left; Left = child.Right; child.Right = this; return child; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public Node RotateRightLeft() { Node child = Right; Node grandChild = child.Left; Right = grandChild.Left; grandChild.Left = this; child.Left = grandChild.Right; grandChild.Right = child; return grandChild; } public override string ToString() => $"size = {Size}, item = {Item}"; } public enum TreeRotation : byte { Left = 1, Right = 2, RightLeft = 3, LeftRight = 4, } public struct Enumerator : IEnumerator<T> { private readonly RedBlackTree<T> tree_; private readonly Stack<Node> stack_; private readonly bool reverse_; private Node current_; internal Enumerator(RedBlackTree<T> tree, bool reverse = false) { tree_ = tree; stack_ = new Stack<Node>(2 * Log2(tree_.Count + 1)); current_ = null; reverse_ = reverse; Intialize(tree_.root_); } private void Intialize(Node startNode) { current_ = null; Node node = startNode; Node next; while (node != null) { next = (reverse_ ? node.Right : node.Left); stack_.Push(node); node = next; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] private static int Log2(int num) => num == 0 ? 0 : BitOperations.Log2((uint)num) + 1; object System.Collections.IEnumerator.Current => Current; public T Current => current_ is null ? default : current_.Item; [MethodImpl(MethodImplOptions.AggressiveInlining)] public bool MoveNext() { if (stack_.Count == 0) { current_ = null; return false; } current_ = stack_.Pop(); var node = reverse_ ? current_.Left : current_.Right; Node next; while (node is null == false) { next = reverse_ ? node.Right : node.Left; stack_.Push(node); node = next; } return true; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Reset() => throw new NotSupportedException(); public void Dispose() { } } } public struct BitFlag { public static BitFlag Begin() => 0; public static BitFlag End(int bitCount) => 1 << bitCount; public static BitFlag FromBit(int bitNumber) => 1 << bitNumber; public static BitFlag Fill(int count) => (1 << count) - 1; private readonly int flags_; public int Flag => flags_; public bool this[int bitNumber] => (flags_ & (1 << bitNumber)) != 0; public BitFlag(int flags) { flags_ = flags; } public bool Has(BitFlag target) => (flags_ & target.flags_) == target.flags_; public bool Has(int target) => (flags_ & target) == target; public bool HasBit(int bitNumber) => (flags_ & (1 << bitNumber)) != 0; public BitFlag OrBit(int bitNumber) => (flags_ | (1 << bitNumber)); public BitFlag AndBit(int bitNumber) => (flags_ & (1 << bitNumber)); public BitFlag XorBit(int bitNumber) => (flags_ ^ (1 << bitNumber)); public BitFlag ComplementOf(BitFlag sub) => flags_ ^ sub.flags_; public int PopCount() => BitOperations.PopCount((uint)flags_); public static BitFlag operator ++(BitFlag src) => new BitFlag(src.flags_ + 1); public static BitFlag operator --(BitFlag src) => new BitFlag(src.flags_ - 1); public static BitFlag operator |(BitFlag lhs, BitFlag rhs) => new BitFlag(lhs.flags_ | rhs.flags_); public static BitFlag operator |(BitFlag lhs, int rhs) => new BitFlag(lhs.flags_ | rhs); public static BitFlag operator |(int lhs, BitFlag rhs) => new BitFlag(lhs | rhs.flags_); public static BitFlag operator &(BitFlag lhs, BitFlag rhs) => new BitFlag(lhs.flags_ & rhs.flags_); public static BitFlag operator &(BitFlag lhs, int rhs) => new BitFlag(lhs.flags_ & rhs); public static BitFlag operator &(int lhs, BitFlag rhs) => new BitFlag(lhs & rhs.flags_); public static bool operator <(BitFlag lhs, BitFlag rhs) => lhs.flags_ < rhs.flags_; public static bool operator <(BitFlag lhs, int rhs) => lhs.flags_ < rhs; public static bool operator <(int lhs, BitFlag rhs) => lhs < rhs.flags_; public static bool operator >(BitFlag lhs, BitFlag rhs) => lhs.flags_ > rhs.flags_; public static bool operator >(BitFlag lhs, int rhs) => lhs.flags_ > rhs; public static bool operator >(int lhs, BitFlag rhs) => lhs > rhs.flags_; public static bool operator <=(BitFlag lhs, BitFlag rhs) => lhs.flags_ <= rhs.flags_; public static bool operator <=(BitFlag lhs, int rhs) => lhs.flags_ <= rhs; public static bool operator <=(int lhs, BitFlag rhs) => lhs <= rhs.flags_; public static bool operator >=(BitFlag lhs, BitFlag rhs) => lhs.flags_ >= rhs.flags_; public static bool operator >=(BitFlag lhs, int rhs) => lhs.flags_ >= rhs; public static bool operator >=(int lhs, BitFlag rhs) => lhs >= rhs.flags_; public static implicit operator BitFlag(int t) => new BitFlag(t); public static implicit operator int(BitFlag t) => t.flags_; public override string ToString() => $"{Convert.ToString(flags_, 2).PadLeft(32, '0')} ({flags_})"; [MethodImpl(MethodImplOptions.AggressiveInlining)] public void ForEachSubBits(Action<BitFlag> action) { for (BitFlag sub = (flags_ - 1) & flags_; sub > 0; sub = --sub & flags_) { action(sub); } } public SubBitsEnumerator SubBits => new SubBitsEnumerator(flags_); public struct SubBitsEnumerator : IEnumerable<BitFlag> { private readonly int flags_; public SubBitsEnumerator(int flags) { flags_ = flags; } IEnumerator<BitFlag> IEnumerable<BitFlag>.GetEnumerator() => new Enumerator(flags_); IEnumerator IEnumerable.GetEnumerator() => new Enumerator(flags_); public Enumerator GetEnumerator() => new Enumerator(flags_); public struct Enumerator : IEnumerator<BitFlag> { private readonly int src_; public BitFlag Current { get; private set; } object IEnumerator.Current => Current; public Enumerator(int flags) { src_ = flags; Current = flags; } public void Dispose() { } [MethodImpl(MethodImplOptions.AggressiveInlining)] public bool MoveNext() => (Current = --Current & src_) > 0; [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Reset() => Current = src_; } } } public class HashMap<TKey, TValue> : Dictionary<TKey, TValue> { private readonly Func<TKey, TValue> initialzier_; public HashMap(Func<TKey, TValue> initialzier) : base() { initialzier_ = initialzier; } public HashMap(Func<TKey, TValue> initialzier, int capacity) : base(capacity) { initialzier_ = initialzier; } new public TValue this[TKey key] { get { if (TryGetValue(key, out TValue value)) { return value; } else { var init = initialzier_(key); base[key] = init; return init; } } set { base[key] = value; } } public HashMap<TKey, TValue> Merge( HashMap<TKey, TValue> src, Func<TValue, TValue, TValue> mergeValues) { foreach (var key in src.Keys) { this[key] = mergeValues(this[key], src[key]); } return this; } } public class JagList2<T> where T : struct { private readonly int n_; private readonly List<T>[] tempValues_; private T[][] values_; public int Count => n_; public List<T>[] Raw => tempValues_; public T[][] Values => values_; public T[] this[int index] => values_[index]; public JagList2(int n) { n_ = n; tempValues_ = new List<T>[n]; for (int i = 0; i < n; ++i) { tempValues_[i] = new List<T>(); } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Add(int i, T value) => tempValues_[i].Add(value); [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Build() { values_ = new T[n_][]; for (int i = 0; i < values_.Length; ++i) { values_[i] = tempValues_[i].ToArray(); } } } public class DijkstraQ { private int count_ = 0; private long[] distanceHeap_; private int[] vertexHeap_; public int Count => count_; public DijkstraQ() { distanceHeap_ = new long[8]; vertexHeap_ = new int[8]; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Enqueue(long distance, int v) { if (distanceHeap_.Length == count_) { var newDistanceHeap = new long[distanceHeap_.Length << 1]; var newVertexHeap = new int[vertexHeap_.Length << 1]; Unsafe.CopyBlock( ref Unsafe.As<long, byte>(ref newDistanceHeap[0]), ref Unsafe.As<long, byte>(ref distanceHeap_[0]), (uint)(8 * count_)); Unsafe.CopyBlock( ref Unsafe.As<int, byte>(ref newVertexHeap[0]), ref Unsafe.As<int, byte>(ref vertexHeap_[0]), (uint)(4 * count_)); distanceHeap_ = newDistanceHeap; vertexHeap_ = newVertexHeap; } ref var dRef = ref distanceHeap_[0]; ref var vRef = ref vertexHeap_[0]; Unsafe.Add(ref dRef, count_) = distance; Unsafe.Add(ref vRef, count_) = v; ++count_; int c = count_ - 1; while (c > 0) { int p = (c - 1) >> 1; var tempD = Unsafe.Add(ref dRef, p); if (tempD <= distance) { break; } else { Unsafe.Add(ref dRef, c) = tempD; Unsafe.Add(ref vRef, c) = Unsafe.Add(ref vRef, p); c = p; } } Unsafe.Add(ref dRef, c) = distance; Unsafe.Add(ref vRef, c) = v; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public (long distance, int v) Dequeue() { ref var dRef = ref distanceHeap_[0]; ref var vRef = ref vertexHeap_[0]; (long distance, int v) ret = (dRef, vRef); int n = count_ - 1; var distance = Unsafe.Add(ref dRef, n); var vertex = Unsafe.Add(ref vRef, n); int p = 0; int c = (p << 1) + 1; while (c < n) { if (c != n - 1 && Unsafe.Add(ref dRef, c + 1) < Unsafe.Add(ref dRef, c)) { ++c; } var tempD = Unsafe.Add(ref dRef, c); if (distance > tempD) { Unsafe.Add(ref dRef, p) = tempD; Unsafe.Add(ref vRef, p) = Unsafe.Add(ref vRef, c); p = c; c = (p << 1) + 1; } else { break; } } Unsafe.Add(ref dRef, p) = distance; Unsafe.Add(ref vRef, p) = vertex; --count_; return ret; } } public struct ModInt { //public const long P = 1000000007; public const long P = 998244353; //public const long P = 10; public const long ROOT = 3; // (924844033, 5) // (998244353, 3) // (1012924417, 5) // (167772161, 3) // (469762049, 3) // (1224736769, 3) private long value_; public static ModInt New(long value, bool mods) => new ModInt(value, mods); public ModInt(long value) => value_ = value; public ModInt(long value, bool mods) { if (mods) { value %= P; if (value < 0) { value += P; } } value_ = value; } public static ModInt operator +(ModInt lhs, ModInt rhs) { lhs.value_ = (lhs.value_ + rhs.value_) % P; return lhs; } public static ModInt operator +(long lhs, ModInt rhs) { rhs.value_ = (lhs + rhs.value_) % P; return rhs; } public static ModInt operator +(ModInt lhs, long rhs) { lhs.value_ = (lhs.value_ + rhs) % P; return lhs; } public static ModInt operator -(ModInt lhs, ModInt rhs) { lhs.value_ = (P + lhs.value_ - rhs.value_) % P; return lhs; } public static ModInt operator -(long lhs, ModInt rhs) { rhs.value_ = (P + lhs - rhs.value_) % P; return rhs; } public static ModInt operator -(ModInt lhs, long rhs) { lhs.value_ = (P + lhs.value_ - rhs) % P; return lhs; } public static ModInt operator *(ModInt lhs, ModInt rhs) { lhs.value_ = lhs.value_ * rhs.value_ % P; return lhs; } public static ModInt operator *(long lhs, ModInt rhs) { rhs.value_ = lhs * rhs.value_ % P; return rhs; } public static ModInt operator *(ModInt lhs, long rhs) { lhs.value_ = lhs.value_ * rhs % P; return lhs; } public static ModInt operator /(ModInt lhs, ModInt rhs) => lhs * Inverse(rhs); public static implicit operator ModInt(long n) => new ModInt(n, true); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static ModInt Inverse(ModInt value) => Pow(value, P - 2); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static ModInt Pow(ModInt value, long k) => Pow(value.value_, k); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static ModInt Pow(long value, long k) { long ret = 1; while (k > 0) { if ((k & 1) != 0) { ret = ret * value % P; } value = value * value % P; k >>= 1; } return new ModInt(ret); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public long ToLong() => value_; public override string ToString() => value_.ToString(); } public static class Helper { public static long INF => 1L << 60; [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T Clamp<T>(this T value, T min, T max) where T : struct, IComparable<T> { if (value.CompareTo(min) <= 0) { return min; } if (value.CompareTo(max) >= 0) { return max; } return value; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void UpdateMin<T>(this ref T target, T value) where T : struct, IComparable<T> => target = target.CompareTo(value) > 0 ? value : target; [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void UpdateMin<T>(this ref T target, T value, Action<T> onUpdated) where T : struct, IComparable<T> { if (target.CompareTo(value) > 0) { target = value; onUpdated(value); } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void UpdateMax<T>(this ref T target, T value) where T : struct, IComparable<T> => target = target.CompareTo(value) < 0 ? value : target; [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void UpdateMax<T>(this ref T target, T value, Action<T> onUpdated) where T : struct, IComparable<T> { if (target.CompareTo(value) < 0) { target = value; onUpdated(value); } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[] Array1<T>(int n, T initialValue) where T : struct => new T[n].Fill(initialValue); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[] Array1<T>(int n, Func<int, T> initializer) => Enumerable.Range(0, n).Select(x => initializer(x)).ToArray(); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[] Fill<T>(this T[] array, T value) where T : struct { array.AsSpan().Fill(value); return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[,] Array2<T>(int n, int m, T initialValule) where T : struct => new T[n, m].Fill(initialValule); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[,] Array2<T>(int n, int m, Func<int, int, T> initializer) { var array = new T[n, m]; for (int i = 0; i < n; ++i) { for (int j = 0; j < m; ++j) { array[i, j] = initializer(i, j); } } return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[,] Fill<T>(this T[,] array, T initialValue) where T : struct { MemoryMarshal.CreateSpan<T>(ref array[0, 0], array.Length).Fill(initialValue); return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Span<T> AsSpan<T>(this T[,] array, int i) => MemoryMarshal.CreateSpan<T>(ref array[i, 0], array.GetLength(1)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[,,] Array3<T>(int n1, int n2, int n3, T initialValue) where T : struct => new T[n1, n2, n3].Fill(initialValue); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[,,] Fill<T>(this T[,,] array, T initialValue) where T : struct { MemoryMarshal.CreateSpan<T>(ref array[0, 0, 0], array.Length).Fill(initialValue); return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Span<T> AsSpan<T>(this T[,,] array, int i, int j) => MemoryMarshal.CreateSpan<T>(ref array[i, j, 0], array.GetLength(2)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[,,,] Array4<T>(int n1, int n2, int n3, int n4, T initialValue) where T : struct => new T[n1, n2, n3, n4].Fill(initialValue); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[,,,] Fill<T>(this T[,,,] array, T initialValue) where T : struct { MemoryMarshal.CreateSpan<T>(ref array[0, 0, 0, 0], array.Length).Fill(initialValue); return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Span<T> AsSpan<T>(this T[,,,] array, int i, int j, int k) => MemoryMarshal.CreateSpan<T>(ref array[i, j, k, 0], array.GetLength(3)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[] Merge<T>(ReadOnlySpan<T> first, ReadOnlySpan<T> second) where T : IComparable<T> { var ret = new T[first.Length + second.Length]; int p = 0; int q = 0; while (p < first.Length || q < second.Length) { if (p == first.Length) { ret[p + q] = second[q]; q++; continue; } if (q == second.Length) { ret[p + q] = first[p]; p++; continue; } if (first[p].CompareTo(second[q]) < 0) { ret[p + q] = first[p]; p++; } else { ret[p + q] = second[q]; q++; } } return ret; } private static readonly int[] delta4_ = { 1, 0, -1, 0, 1 }; [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void DoIn4(int i, int j, int imax, int jmax, Action<int, int> action) { for (int dn = 0; dn < 4; ++dn) { int d4i = i + delta4_[dn]; int d4j = j + delta4_[dn + 1]; if ((uint)d4i < (uint)imax && (uint)d4j < (uint)jmax) { action(d4i, d4j); } } } private static readonly int[] delta8_ = { 1, 0, -1, 0, 1, 1, -1, -1, 1 }; [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void DoIn8(int i, int j, int imax, int jmax, Action<int, int> action) { for (int dn = 0; dn < 8; ++dn) { int d8i = i + delta8_[dn]; int d8j = j + delta8_[dn + 1]; if ((uint)d8i < (uint)imax && (uint)d8j < (uint)jmax) { action(d8i, d8j); } } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void ForEachSubBits(int bit, Action<int> action) { for (int sub = bit; sub >= 0; --sub) { sub &= bit; action(sub); } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static string Reverse(string src) { var chars = src.ToCharArray(); for (int i = 0, j = chars.Length - 1; i < j; ++i, --j) { var tmp = chars[i]; chars[i] = chars[j]; chars[j] = tmp; } return new string(chars); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void Swap(this string str, int i, int j) { var span = str.AsWriteableSpan(); (span[i], span[j]) = (span[j], span[i]); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static char Replace(this string str, int index, char c) { var span = str.AsWriteableSpan(); char old = span[index]; span[index] = c; return old; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Span<char> AsWriteableSpan(this string str) { var span = str.AsSpan(); return MemoryMarshal.CreateSpan(ref MemoryMarshal.GetReference(span), span.Length); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static string Join<T>(this IEnumerable<T> values, string separator = "") => string.Join(separator, values); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static string JoinNL<T>(this IEnumerable<T> values) => string.Join(Environment.NewLine, values); } public static class Extensions { [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Span<T> AsSpan<T>(this List<T> list) { return Unsafe.As<FakeList<T>>(list).Array.AsSpan(0, list.Count); } private class FakeList<T> { public T[] Array = null; } } public class Scanner : IDisposable { private const int BUFFER_SIZE = 1024; private const int ASCII_CHAR_BEGIN = 33; private const int ASCII_CHAR_END = 126; private readonly string filePath_; private readonly Stream stream_; private readonly byte[] buf_ = new byte[BUFFER_SIZE]; private int length_ = 0; private int index_ = 0; private bool isEof_ = false; public Scanner(string file = "") { if (string.IsNullOrWhiteSpace(file)) { stream_ = Console.OpenStandardInput(); } else { filePath_ = file; stream_ = new FileStream(file, FileMode.Open); } Console.SetOut(new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false }); } public void Dispose() { Console.Out.Flush(); stream_.Dispose(); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public char Char() { byte b; do { b = Read(); } while (b < ASCII_CHAR_BEGIN || ASCII_CHAR_END < b); return (char)b; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public string Next() { var sb = new StringBuilder(); for (var b = Char(); b >= ASCII_CHAR_BEGIN && b <= ASCII_CHAR_END; b = (char)Read()) { sb.Append(b); } return sb.ToString(); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public string[] ArrayString(int length) { var array = new string[length]; for (int i = 0; i < length; ++i) { array[i] = Next(); } return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public int Int() => (int)Long(); [MethodImpl(MethodImplOptions.AggressiveInlining)] public int Int(int offset) => Int() + offset; [MethodImpl(MethodImplOptions.AggressiveInlining)] public (int, int) Int2(int offset = 0) => (Int(offset), Int(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (int, int, int) Int3(int offset = 0) => (Int(offset), Int(offset), Int(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (int, int, int, int) Int4(int offset = 0) => (Int(offset), Int(offset), Int(offset), Int(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public int[] ArrayInt(int length, int offset = 0) { var array = new int[length]; for (int i = 0; i < length; ++i) { array[i] = Int(offset); } return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public long Long() { long ret = 0; byte b; bool ng = false; do { b = Read(); } while (b != '-' && (b < '0' || '9' < b)); if (b == '-') { ng = true; b = Read(); } for (; true; b = Read()) { if (b < '0' || '9' < b) { return ng ? -ret : ret; } else { ret = ret * 10 + b - '0'; } } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public long Long(long offset) => Long() + offset; [MethodImpl(MethodImplOptions.AggressiveInlining)] public (long, long) Long2(long offset = 0) => (Long(offset), Long(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (long, long, long) Long3(long offset = 0) => (Long(offset), Long(offset), Long(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (long, long, long, long) Long4(long offset = 0) => (Long(offset), Long(offset), Long(offset), Long(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public long[] ArrayLong(int length, long offset = 0) { var array = new long[length]; for (int i = 0; i < length; ++i) { array[i] = Long(offset); } return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public BigInteger Big() => new BigInteger(Long()); [MethodImpl(MethodImplOptions.AggressiveInlining)] public BigInteger Big(long offset) => Big() + offset; [MethodImpl(MethodImplOptions.AggressiveInlining)] public (BigInteger, BigInteger) Big2(long offset = 0) => (Big(offset), Big(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (BigInteger, BigInteger, BigInteger) Big3(long offset = 0) => (Big(offset), Big(offset), Big(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (BigInteger, BigInteger, BigInteger, BigInteger) Big4(long offset = 0) => (Big(offset), Big(offset), Big(offset), Big(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public BigInteger[] ArrayBig(int length, long offset = 0) { var array = new BigInteger[length]; for (int i = 0; i < length; ++i) { array[i] = Big(offset); } return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public double Double() => double.Parse(Next(), CultureInfo.InvariantCulture); [MethodImpl(MethodImplOptions.AggressiveInlining)] public double Double(double offset) => Double() + offset; [MethodImpl(MethodImplOptions.AggressiveInlining)] public (double, double) Double2(double offset = 0) => (Double(offset), Double(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (double, double, double) Double3(double offset = 0) => (Double(offset), Double(offset), Double(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (double, double, double, double) Double4(double offset = 0) => (Double(offset), Double(offset), Double(offset), Double(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public double[] ArrayDouble(int length, double offset = 0) { var array = new double[length]; for (int i = 0; i < length; ++i) { array[i] = Double(offset); } return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public decimal Decimal() => decimal.Parse(Next(), CultureInfo.InvariantCulture); [MethodImpl(MethodImplOptions.AggressiveInlining)] public decimal Decimal(decimal offset) => Decimal() + offset; [MethodImpl(MethodImplOptions.AggressiveInlining)] public (decimal, decimal) Decimal2(decimal offset = 0) => (Decimal(offset), Decimal(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (decimal, decimal, decimal) Decimal3(decimal offset = 0) => (Decimal(offset), Decimal(offset), Decimal(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (decimal, decimal, decimal, decimal) Decimal4(decimal offset = 0) => (Decimal(offset), Decimal(offset), Decimal(offset), Decimal(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public decimal[] ArrayDecimal(int length, decimal offset = 0) { var array = new decimal[length]; for (int i = 0; i < length; ++i) { array[i] = Decimal(offset); } return array; } private byte Read() { if (isEof_) { throw new EndOfStreamException(); } if (index_ >= length_) { index_ = 0; if ((length_ = stream_.Read(buf_, 0, BUFFER_SIZE)) <= 0) { isEof_ = true; return 0; } } return buf_[index_++]; } public void Save(string text) { if (string.IsNullOrWhiteSpace(filePath_)) { return; } File.WriteAllText(filePath_ + "_output.txt", text); } } }