結果
| 問題 |
No.1514 Squared Matching
|
| コンテスト | |
| ユーザー |
yuruhiya
|
| 提出日時 | 2021-07-25 15:20:12 |
| 言語 | Crystal (1.14.0) |
| 結果 |
MLE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 12,848 bytes |
| コンパイル時間 | 14,423 ms |
| コンパイル使用メモリ | 293,540 KB |
| 実行使用メモリ | 817,040 KB |
| 最終ジャッジ日時 | 2024-07-20 23:35:24 |
| 合計ジャッジ時間 | 15,469 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 1 MLE * 1 -- * 24 |
ソースコード
# require "atcoder/Prime"
# ac-library.cr by hakatashi https://github.com/google/ac-library.cr
#
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# require "./Math.cr"
# ac-library.cr by hakatashi https://github.com/google/ac-library.cr
#
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
module AtCoder
# Implements [ACL's Math library](https://atcoder.github.io/ac-library/master/document_en/math.html)
module Math
def self.extended_gcd(a, b)
last_remainder, remainder = a.abs, b.abs
x, last_x, y, last_y = 0_i64, 1_i64, 1_i64, 0_i64
while remainder != 0
new_last_remainder = remainder
quotient, remainder = last_remainder.divmod(remainder)
last_remainder = new_last_remainder
x, last_x = last_x - quotient * x, x
y, last_y = last_y - quotient * y, y
end
return last_remainder, last_x * (a < 0 ? -1 : 1)
end
# Implements atcoder::inv_mod(value, modulo).
def self.inv_mod(value, modulo)
gcd, inv = extended_gcd(value, modulo)
if gcd != 1
raise ArgumentError.new("#{value} and #{modulo} are not coprime")
end
inv % modulo
end
# Simplified AtCoder::Math.pow_mod with support of Int64
def self.pow_mod(base, exponent, modulo)
if exponent == 0
return base.class.zero + 1
end
if base == 0
return base
end
b = exponent > 0 ? base : inv_mod(base, modulo)
e = exponent.abs
ret = 1_i64
while e > 0
if e % 2 == 1
ret = mul_mod(ret, b, modulo)
end
b = mul_mod(b, b, modulo)
e //= 2
end
ret
end
# Caluculates a * b % mod without overflow detection
@[AlwaysInline]
def self.mul_mod(a : Int64, b : Int64, mod : Int64)
if mod < Int32::MAX
return a * b % mod
end
# 31-bit width
a_high = (a >> 32).to_u64
# 32-bit width
a_low = (a & 0xFFFFFFFF).to_u64
# 31-bit width
b_high = (b >> 32).to_u64
# 32-bit width
b_low = (b & 0xFFFFFFFF).to_u64
# 31-bit + 32-bit + 1-bit = 64-bit
c = a_high * b_low + b_high * a_low
c_high = c >> 32
c_low = c & 0xFFFFFFFF
# 31-bit + 31-bit
res_high = a_high * b_high + c_high
# 32-bit + 32-bit
res_low = a_low * b_low
res_low_high = res_low >> 32
res_low_low = res_low & 0xFFFFFFFF
# Overflow
if res_low_high + c_low >= 0x100000000
res_high += 1
end
res_low = (((res_low_high + c_low) & 0xFFFFFFFF) << 32) | res_low_low
(((res_high.to_i128 << 64) | res_low) % mod).to_i64
end
@[AlwaysInline]
def self.mul_mod(a, b, mod)
typeof(mod).new(a.to_i64 * b % mod)
end
# Implements atcoder::crt(remainders, modulos).
def self.crt(remainders, modulos)
raise ArgumentError.new unless remainders.size == modulos.size
total_modulo = 1_i64
answer = 0_i64
remainders.zip(modulos).each do |(remainder, modulo)|
gcd, p = extended_gcd(total_modulo, modulo)
if (remainder - answer) % gcd != 0
return 0_i64, 0_i64
end
tmp = (remainder - answer) // gcd * p % (modulo // gcd)
answer += total_modulo * tmp
total_modulo *= modulo // gcd
end
return answer % total_modulo, total_modulo
end
# Implements atcoder::floor_sum(n, m, a, b).
def self.floor_sum(n, m, a, b)
n, m, a, b = n.to_i64, m.to_i64, a.to_i64, b.to_i64
res = 0_i64
if a < 0
a2 = a % m
res -= n * (n - 1) // 2 * ((a2 - a) // m)
a = a2
end
if b < 0
b2 = b % m
res -= n * ((b2 - b) // m)
b = b2
end
res + floor_sum_unsigned(n, m, a, b)
end
private def self.floor_sum_unsigned(n, m, a, b)
res = 0_i64
loop do
if a >= m
res += n * (n - 1) // 2 * (a // m)
a = a % m
end
if b >= m
res += n * (b // m)
b = b % m
end
y_max = a * n + b
break if y_max < m
n = y_max // m
b = y_max % m
m, a = a, m
end
res
end
end
end
module AtCoder
# Implements [Ruby's Prime library](https://ruby-doc.com/stdlib/libdoc/prime/rdoc/Prime.html).
#
# ```
# AtCoder::Prime.first(7) # => [2, 3, 5, 7, 11, 13, 17]
# ```
module Prime
extend self
include Enumerable(Int64)
@@primes = [
2_i64, 3_i64, 5_i64, 7_i64, 11_i64, 13_i64, 17_i64, 19_i64,
23_i64, 29_i64, 31_i64, 37_i64, 41_i64, 43_i64, 47_i64,
53_i64, 59_i64, 61_i64, 67_i64, 71_i64, 73_i64, 79_i64,
83_i64, 89_i64, 97_i64, 101_i64,
]
def each
index = 0
loop do
yield get_nth_prime(index)
index += 1
end
end
def prime_division(value : Int)
raise DivisionByZeroError.new if value == 0
int = typeof(value)
factors = [] of Tuple(typeof(value), typeof(value))
if value < 0
value = value.abs
factors << {int.new(-1), int.new(1)}
end
until prime?(value) || value == 1
factor = value
until prime?(factor)
factor = find_factor(factor)
end
count = 0
while value % factor == 0
value //= factor
count += 1
end
factors << {int.new(factor), int.new(count)}
end
if value > 1
factors << {value, int.new(1)}
end
factors.sort_by! { |(factor, _)| factor }
end
private def find_factor(n : Int)
# Factor of 4 cannot be discovered by Pollard's Rho with f(x) = x^x+1
if n == 4
typeof(n).new(2)
else
pollard_rho(n).not_nil!
end
end
# Get single factor by Pollard's Rho Algorithm
private def pollard_rho(n : Int)
typeof(n).new(1).upto(n) do |i|
x = i
y = pollard_random_f(x, n)
loop do
x = pollard_random_f(x, n)
y = pollard_random_f(pollard_random_f(y, n), n)
gcd = (x - y).gcd(n)
if gcd == n
break
end
if gcd != 1
return gcd
end
end
end
end
private def pollard_random_f(n : Int, mod : Int)
(AtCoder::Math.mul_mod(n, n, mod) + 1) % mod
end
private def extract_prime_division_base(prime_divisions_class : Array({T, T}).class) forall T
T
end
def int_from_prime_division(prime_divisions : Array({Int, Int}))
int_class = extract_prime_division_base(prime_divisions.class)
prime_divisions.reduce(int_class.new(1)) { |i, (factor, exponent)| i * factor ** exponent }
end
def prime?(value : Int)
# Obvious patterns
return false if value < 2
return true if value <= 3
return false if value.even?
return true if value < 9
if value < 0xffff
return false unless typeof(value).new(30).gcd(value % 30) == 1
7.step(by: 30, to: value) do |base|
break if base * base > value
if {0, 4, 6, 10, 12, 16, 22, 24}.any? { |i| value % (base + i) == 0 }
return false
end
end
return true
end
miller_rabin(value.to_i64)
end
private def miller_rabin(value)
d = value - 1
s = 0_i64
until d.odd?
d >>= 1
s += 1
end
miller_rabin_bases(value).each do |base|
next if base == value
x = AtCoder::Math.pow_mod(base.to_i64, d, value)
next if x == 1 || x == value - 1
is_composite = s.times.all? do
x = AtCoder::Math.mul_mod(x, x, value)
x != value - 1
end
return false if is_composite
end
true
end
# We can reduce time complexity of Miller-Rabin tests by testing against
# predefined bases which is enough to test against primarity in the given range.
# https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test
# ameba:disable Metrics/CyclomaticComplexity
private def miller_rabin_bases(value)
case
when value < 1_373_653_i64
[2, 3]
when value < 9_080_191_i64
[31, 73]
when value < 25_326_001_i64
[2, 3, 5]
when value < 3_215_031_751_i64
[2, 3, 5, 7]
when value < 4_759_123_141_i64
[2, 7, 61]
when value < 1_122_004_669_633_i64
[2, 13, 23, 1662803]
when value < 2_152_302_898_747_i64
[2, 3, 5, 7, 11]
when value < 3_474_749_660_383_i64
[2, 3, 5, 7, 11, 13]
when value < 341_550_071_728_321_i64
[2, 3, 5, 7, 11, 13, 17]
when value < 3_825_123_056_546_413_051_i64
[2, 3, 5, 7, 11, 13, 17, 19, 23]
else
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
end
end
private def get_nth_prime(n)
while @@primes.size <= n
generate_primes
end
@@primes[n]
end
# Doubles the size of the cached prime array and performs the
# Sieve of Eratosthenes on it.
private def generate_primes
new_primes_size = @@primes.size < 1_000_000 ? @@primes.size : 1_000_000
new_primes = Array(Int64).new(new_primes_size) { |i| @@primes.last + (i + 1) * 2 }
new_primes_max = new_primes.last
@@primes.each do |prime|
next if prime == 2
break if prime * prime > new_primes_max
# Here I use the technique of the Sieve of Sundaram. We can
# only test against the odd multiple of the given prime.
# min_composite is the minimum number that is greater than
# the last confirmed prime, and is an odd multiple of
# the given prime.
min_multiple = ((@@primes.last // prime + 1) // 2 * 2 + 1) * prime
min_multiple.step(by: prime * 2, to: new_primes_max) do |multiple|
index = new_primes_size - (new_primes_max - multiple) // 2 - 1
new_primes[index] = 0_i64
end
end
@@primes.concat(new_primes.reject(0_i64))
end
private struct EachDivisor(T)
include Enumerable(T)
def initialize(@exponential_factors : Array(Array(T)))
end
def each
Array.each_product(@exponential_factors) do |factors|
yield factors.reduce { |a, b| a * b }
end
end
end
# Returns an enumerator that iterates through the all positive divisors of
# the given number. **The order is not guaranteed.**
# Not in the original Ruby's Prime library.
#
# ```
# AtCoder::Prime.each_divisor(20) do |n|
# puts n
# end # => Puts 1, 2, 4, 5, 10, and 20
#
# AtCoder::Prime.each_divisor(10).map { |n| 1.0 / n }.to_a # => [1.0, 0.5, 0.2, 0.1]
# ```
def each_divisor(value : Int)
raise ArgumentError.new unless value > 0
factors = prime_division(value)
if value == 1
exponential_factors = [[value]]
else
exponential_factors = factors.map do |(factor, count)|
cnt = typeof(value).zero + 1
Array(typeof(value)).new(count + 1) do |i|
cnt_copy = cnt
if i < count
cnt *= factor
end
cnt_copy
end
end
end
EachDivisor(typeof(value)).new(exponential_factors)
end
# :ditto:
def each_divisor(value : T, &block : T ->)
each_divisor(value).each(&block)
end
end
end
struct Int
def prime?
AtCoder::Prime.prime?(self)
end
end
def count(x)
sqrt = Math.sqrt(x).to_i + 1
while sqrt * sqrt > x
sqrt -= 1
end
sqrt
end
n = read_line.to_i
dp = (0..n).to_a
AtCoder::Prime.each do |p|
x = p * p
break if x > n
y = x
while y <= n
y.step(to: n, by: y) { |y| dp[y] //= x }
y *= x
end
end
puts (1..n).sum { |x|
count(n // dp[x])
}
yuruhiya