結果
問題 | No.502 階乗を計算するだけ |
ユーザー | hly1204 |
提出日時 | 2021-07-26 16:17:20 |
言語 | C++17(clang) (17.0.6 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 25,532 bytes |
コンパイル時間 | 3,112 ms |
コンパイル使用メモリ | 145,988 KB |
実行使用メモリ | 29,224 KB |
最終ジャッジ日時 | 2024-07-22 06:47:57 |
合計ジャッジ時間 | 5,892 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 34 ms
29,048 KB |
testcase_01 | AC | 30 ms
29,048 KB |
testcase_02 | AC | 30 ms
29,176 KB |
testcase_03 | AC | 29 ms
29,176 KB |
testcase_04 | AC | 28 ms
29,048 KB |
testcase_05 | AC | 28 ms
29,052 KB |
testcase_06 | AC | 29 ms
29,048 KB |
testcase_07 | AC | 30 ms
29,048 KB |
testcase_08 | AC | 29 ms
29,052 KB |
testcase_09 | AC | 29 ms
29,048 KB |
testcase_10 | AC | 29 ms
29,048 KB |
testcase_11 | AC | 29 ms
29,176 KB |
testcase_12 | AC | 29 ms
29,044 KB |
testcase_13 | AC | 29 ms
29,048 KB |
testcase_14 | AC | 29 ms
29,048 KB |
testcase_15 | AC | 30 ms
29,176 KB |
testcase_16 | AC | 29 ms
29,052 KB |
testcase_17 | AC | 29 ms
29,052 KB |
testcase_18 | AC | 29 ms
29,084 KB |
testcase_19 | AC | 30 ms
29,052 KB |
testcase_20 | AC | 29 ms
29,048 KB |
testcase_21 | AC | 29 ms
29,176 KB |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | WA | - |
testcase_35 | WA | - |
testcase_36 | WA | - |
testcase_37 | WA | - |
testcase_38 | WA | - |
testcase_39 | WA | - |
testcase_40 | WA | - |
testcase_41 | AC | 29 ms
29,052 KB |
testcase_42 | AC | 28 ms
29,052 KB |
testcase_43 | AC | 28 ms
29,172 KB |
testcase_44 | AC | 28 ms
29,044 KB |
testcase_45 | AC | 28 ms
29,052 KB |
testcase_46 | AC | 30 ms
29,048 KB |
testcase_47 | AC | 29 ms
29,052 KB |
testcase_48 | AC | 28 ms
29,048 KB |
testcase_49 | AC | 28 ms
29,048 KB |
testcase_50 | AC | 30 ms
29,176 KB |
testcase_51 | AC | 29 ms
29,048 KB |
ソースコード
#line 1 "remote_test\\yuki\\math\\502.0.test.cpp" #define PROBLEM "https://yukicoder.me/problems/no/502" #include <iostream> #line 1 "math\\formal_power_series\\arbitrary_modulo_convolution.hpp" /** * @brief arbitrary modulo convolution / 任意模数卷积 * */ #include <cstdint> #include <type_traits> #include <vector> #line 1 "modint\\Montgomery_modint.hpp" /** * @brief Montgomery modint / Montgomery 取模类 * @docs docs/modint/Montgomery_modint.md */ #line 12 "modint\\Montgomery_modint.hpp" namespace lib { /** * @brief Montgomery 取模类 * @see https://nyaannyaan.github.io/library/modint/montgomery-modint.hpp * @author Nyaan * @tparam mod 为奇数且大于 1 */ template <std::uint32_t mod> class MontgomeryModInt { public: using i32 = std::int32_t; using u32 = std::uint32_t; using u64 = std::uint64_t; using m32 = MontgomeryModInt; using value_type = u32; static constexpr u32 get_mod() { return mod; } static constexpr u32 get_primitive_root_prime() { u32 tmp[32] = {}; int cnt = 0; const u32 phi = mod - 1; u32 m = phi; for (u32 i = 2; i * i <= m; ++i) { if (m % i == 0) { tmp[cnt++] = i; do { m /= i; } while (m % i == 0); } } if (m != 1) tmp[cnt++] = m; for (m32 res = 2;; res += 1) { bool f = true; for (int i = 0; i < cnt && f; ++i) f &= res.pow(phi / tmp[i]) != 1; if (f) return u32(res); } } constexpr MontgomeryModInt() = default; ~MontgomeryModInt() = default; template <typename T, std::enable_if_t<std::is_integral_v<T>, int> = 0> constexpr MontgomeryModInt(T v) : v_(reduce(u64(v % i32(mod) + i32(mod)) * r2)) {} constexpr MontgomeryModInt(const m32 &) = default; constexpr u32 get() const { return norm(reduce(v_)); } template <typename T, std::enable_if_t<std::is_integral_v<T>, int> = 0> explicit constexpr operator T() const { return T(get()); } constexpr m32 operator-() const { m32 res; res.v_ = (mod2 & -(v_ != 0)) - v_; return res; } constexpr m32 inv() const { i32 x1 = 1, x3 = 0, a = get(), b = mod; while (b != 0) { i32 q = a / b, x1_old = x1, a_old = a; x1 = x3, x3 = x1_old - x3 * q, a = b, b = a_old - b * q; } return m32(x1); } constexpr m32 &operator=(const m32 &) = default; constexpr m32 &operator+=(const m32 &rhs) { v_ += rhs.v_ - mod2; v_ += mod2 & -(v_ >> 31); return *this; } constexpr m32 &operator-=(const m32 &rhs) { v_ -= rhs.v_; v_ += mod2 & -(v_ >> 31); return *this; } constexpr m32 &operator*=(const m32 &rhs) { v_ = reduce(u64(v_) * rhs.v_); return *this; } constexpr m32 &operator/=(const m32 &rhs) { return operator*=(rhs.inv()); } friend constexpr m32 operator+(const m32 &lhs, const m32 &rhs) { return m32(lhs) += rhs; } friend constexpr m32 operator-(const m32 &lhs, const m32 &rhs) { return m32(lhs) -= rhs; } friend constexpr m32 operator*(const m32 &lhs, const m32 &rhs) { return m32(lhs) *= rhs; } friend constexpr m32 operator/(const m32 &lhs, const m32 &rhs) { return m32(lhs) /= rhs; } friend constexpr bool operator==(const m32 &lhs, const m32 &rhs) { return norm(lhs.v_) == norm(rhs.v_); } friend constexpr bool operator!=(const m32 &lhs, const m32 &rhs) { return norm(lhs.v_) != norm(rhs.v_); } friend std::istream &operator>>(std::istream &is, m32 &rhs) { i32 x; is >> x; rhs = m32(x); return is; } friend std::ostream &operator<<(std::ostream &os, const m32 &rhs) { return os << rhs.get(); } constexpr m32 pow(u64 y) const { m32 res(1), x(*this); for (; y != 0; y >>= 1, x *= x) if (y & 1) res *= x; return res; } private: static constexpr u32 get_r() { u32 two = 2, iv = mod * (two - mod * mod); iv *= two - mod * iv; iv *= two - mod * iv; return iv * (mod * iv - two); } static constexpr u32 reduce(u64 x) { return (x + u64(u32(x) * r) * mod) >> 32; } static constexpr u32 norm(u32 x) { return x - (mod & -((mod - 1 - x) >> 31)); } u32 v_; static constexpr u32 r = get_r(); static constexpr u32 r2 = -u64(mod) % mod; static constexpr u32 mod2 = mod << 1; static_assert((mod & 1) == 1, "mod % 2 == 0\n"); static_assert(-r * mod == 1, "???\n"); static_assert((mod & (3U << 30)) == 0, "mod >= (1 << 30)\n"); static_assert(mod != 1, "mod == 1\n"); }; // 别名 template <std::uint32_t mod> using MontModInt = MontgomeryModInt<mod>; } // namespace lib #line 1 "math\\formal_power_series\\NTT_crt.hpp" /** * @brief NTT prime crt / NTT 素数用中国剩余定理 * */ #line 11 "math\\formal_power_series\\NTT_crt.hpp" namespace lib { template <std::uint32_t M0, std::uint32_t M1, std::uint32_t M2, std::enable_if_t<(M0 < M1) && ((M0 | M1 | M2) < (1U << 31)) && ((M0 & M1 & M2 & 1) == 1) && (M0 != M1) && (M0 != M2) && (M1 != M2), int> = 0> class NTTCRT3 { public: using u32 = std::uint32_t; using u64 = std::uint64_t; constexpr NTTCRT3(u32 mod) : m_(mod), M0M1_mod_m_(static_cast<u64>(M0) * M1 % mod) {} ~NTTCRT3() = default; constexpr u32 operator()(u32 a, u32 b, u32 c) const { // x mod M0 = a, x mod M1 = b, x mod M2 = c // a + k0M0 = b + k1M1 => k0 = (b - a) / M0 (mod M1) // x = a + k0M0 (mod M0M1) => a + k0M0 + k01M0M1 = c + k2M2 // => k01 = (c - (a + k0M0)) / (M0M1) (mod M2) // => x mod M0M1M2 = a + k0M0 + k01M0M1 u32 k0 = b - a; if (static_cast<int>(k0) < 0) k0 += M1; k0 = static_cast<u64>(k0) * M0_inv_M1_ % M1; u64 d = a + static_cast<u64>(k0) * M0; u32 k01 = c - d % M2; if (static_cast<int>(k01) < 0) k01 += M2; // NTT 模数都小于 (1U << 31) 所以在这里可以使用加法后再取模 return (d + static_cast<u64>(k01) * M0M1_inv_M2_ % M2 * M0M1_mod_m_) % m_; } static constexpr u32 get_inv(u32 x, u32 mod) { u32 res = 1; for (u32 e = mod - 2; e != 0; e >>= 1) { if (e & 1) res = static_cast<u64>(res) * x % mod; x = static_cast<u64>(x) * x % mod; } return res; } private: u32 m_, M0M1_mod_m_; static constexpr u32 M0_inv_M1_ = get_inv(M0, M1); static constexpr u32 M0M1_inv_M2_ = get_inv(static_cast<u64>(M0) * M1 % M2, M2); }; } // namespace lib #line 1 "math\\formal_power_series\\convolution.hpp" /** * @brief convolution / 卷积 * */ #include <cassert> #line 11 "math\\formal_power_series\\convolution.hpp" #line 1 "math\\formal_power_series\\radix_2_NTT.hpp" /** * @brief radix-2 NTT / 基-2 数论变换 * @docs docs/math/formal_power_series/radix_2_NTT.md */ #include <algorithm> #line 13 "math\\formal_power_series\\radix_2_NTT.hpp" #line 1 "traits\\modint.hpp" /** * @brief modint traits / 取模类萃取 * */ namespace lib { template <typename mod_t> struct modint_traits { using type = typename mod_t::value_type; static constexpr type get_mod() { return mod_t::get_mod(); } static constexpr type get_primitive_root_prime() { return mod_t::get_primitive_root_prime(); } }; } // namespace lib #line 15 "math\\formal_power_series\\radix_2_NTT.hpp" namespace lib { /** * @note 必须用 NTT 友好的模数!!! */ template <typename mod_t> class NTT { public: NTT() = delete; static void set_root(int len) { static int lim = 0; static constexpr mod_t g(modint_traits<mod_t>::get_primitive_root_prime()); if (lim == 0) { constexpr int offset = 20; rt.resize(1 << offset); irt.resize(1 << offset); rt[0] = irt[0] = mod_t(1); mod_t g_t = g.pow(modint_traits<mod_t>::get_mod() >> (offset + 1)), ig_t = g_t.inv(); rt[1 << (offset - 1)] = g_t, irt[1 << (offset - 1)] = ig_t; for (int i = offset - 2; i >= 0; --i) rt[1 << i] = (g_t *= g_t), irt[1 << i] = (ig_t *= ig_t); lim = 1; } for (; (lim << 1) < len; lim <<= 1) { mod_t g = rt[lim], ig = irt[lim]; for (int i = lim + 1, e = lim << 1; i < e; ++i) rt[i] = rt[i - lim] * g, irt[i] = irt[i - lim] * ig; } } static void dft(int n, mod_t *x) { for (int j = 0, l = n >> 1; j != l; ++j) { mod_t u = x[j], v = x[j + l]; x[j] = u + v, x[j + l] = u - v; } for (int i = n >> 1; i >= 2; i >>= 1) { for (int j = 0, l = i >> 1; j != l; ++j) { mod_t u = x[j], v = x[j + l]; x[j] = u + v, x[j + l] = u - v; } for (int j = i, l = i >> 1, m = 1; j != n; j += i, ++m) { mod_t root = rt[m]; for (int k = 0; k != l; ++k) { mod_t u = x[j + k], v = x[j + k + l] * root; x[j + k] = u + v, x[j + k + l] = u - v; } } } } static void idft(int n, mod_t *x) { for (int i = 2; i < n; i <<= 1) { for (int j = 0, l = i >> 1; j != l; ++j) { mod_t u = x[j], v = x[j + l]; x[j] = u + v, x[j + l] = u - v; } for (int j = i, l = i >> 1, m = 1; j != n; j += i, ++m) { mod_t root = irt[m]; for (int k = 0; k != l; ++k) { mod_t u = x[j + k], v = x[j + k + l]; x[j + k] = u + v, x[j + k + l] = (u - v) * root; } } } mod_t iv(mod_t(n).inv()); for (int j = 0, l = n >> 1; j != l; ++j) { mod_t u = x[j] * iv, v = x[j + l] * iv; x[j] = u + v, x[j + l] = u - v; } } static void even_dft(int n, mod_t *x) { static constexpr mod_t IT(mod_t(2).inv()); for (int i = 0, j = 0; i != n; i += 2, ++j) x[j] = IT * (x[i] + x[i + 1]); } static void odd_dft(int n, mod_t *x) { static constexpr mod_t IT(mod_t(2).inv()); for (int i = 0, j = 0; i != n; i += 2, ++j) x[j] = IT * irt[j] * (x[i] - x[i + 1]); } static void dft_doubling(int n, mod_t *x) { static constexpr mod_t g(modint_traits<mod_t>::get_primitive_root_prime()); std::copy_n(x, n, x + n); idft(n, x + n); mod_t k(1), t(g.pow((modint_traits<mod_t>::get_mod() - 1) / (n << 1))); for (int i = 0; i != n; ++i) x[n + i] *= k, k *= t; dft(n, x + n); } private: static inline std::vector<mod_t> rt, irt; }; std::uint32_t get_ntt_len(std::uint32_t n) { --n; n |= n >> 1; n |= n >> 2; n |= n >> 4; n |= n >> 8; return (n | n >> 16) + 1; } /** * @brief 接收一个多项式,返回二进制翻转后的 DFT 序列,即 x(1), x(-1) 等, * 对于下标 i 和 i^1 必然是两个互为相反数的点值 * * @tparam mod_t * @param n * @param x */ template <typename mod_t> void dft(int n, mod_t *x) { NTT<mod_t>::set_root(n); NTT<mod_t>::dft(n, x); } /** * @brief 接收二进制翻转后的 DFT 序列,返回多项式序列 mod (x^n - 1) * * @tparam mod_t * @param n * @param x */ template <typename mod_t> void idft(int n, mod_t *x) { NTT<mod_t>::set_root(n); NTT<mod_t>::idft(n, x); } template <typename mod_t> void dft(std::vector<mod_t> &x) { NTT<mod_t>::set_root(x.size()); NTT<mod_t>::dft(x.size(), x.data()); } template <typename mod_t> void idft(std::vector<mod_t> &x) { NTT<mod_t>::set_root(x.size()); NTT<mod_t>::idft(x.size(), x.data()); } } // namespace lib #line 13 "math\\formal_power_series\\convolution.hpp" namespace lib { /** * @brief NTT 模数卷积 * @tparam mod_t NTT 友好的模数类 */ template <typename mod_t> std::vector<mod_t> convolve(const std::vector<mod_t> &x, const std::vector<mod_t> &y) { int n = x.size(), m = y.size(); if (std::min(n, m) <= 32) { std::vector<mod_t> res(n + m - 1, mod_t(0)); for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) res[i + j] += x[i] * y[j]; return res; } int len = get_ntt_len(n + m - 1); std::vector<mod_t> res(len); std::copy_n(x.begin(), n, res.begin()); std::fill(res.begin() + n, res.end(), mod_t(0)); dft(res); if (&x == &y) { for (int i = 0; i < len; ++i) res[i] *= res[i]; } else { std::vector<mod_t> y_tmp(len); std::copy_n(y.begin(), m, y_tmp.begin()); std::fill(y_tmp.begin() + m, y_tmp.end(), mod_t(0)); dft(y_tmp); for (int i = 0; i < len; ++i) res[i] *= y_tmp[i]; } idft(res); res.resize(n + m - 1); return res; } /** * @brief NTT 模数循环卷积 * @param x * @param y * @param cyclen 必须为 2 的幂次! * @return std::vector<mod_t> convolve(x, y) mod (x^cyclen - 1) */ template <typename mod_t> std::vector<mod_t> convolve_cyclic(const std::vector<mod_t> &x, const std::vector<mod_t> &y, int cyclen) { assert((cyclen & (cyclen - 1)) == 0); int n = x.size(), m = y.size(), mask = cyclen - 1; if (cyclen >= n + m - 1) return convolve(x, y); if (std::min(n, m) <= 32) { std::vector<mod_t> res(cyclen, mod_t(0)); for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) res[(i + j) & mask] += x[i] * y[j]; return res; } std::vector<mod_t> res(cyclen, mod_t(0)); for (int i = 0; i < n; ++i) res[i & mask] += x[i]; dft(res); if (&x == &y) { for (int i = 0; i < cyclen; ++i) res[i] *= res[i]; } else { std::vector<mod_t> y_tmp(cyclen, mod_t(0)); for (int i = 0; i < m; ++i) y_tmp[i & mask] += y[i]; dft(y_tmp); for (int i = 0; i < cyclen; ++i) res[i] *= y_tmp[i]; } idft(res); return res; } } // namespace lib #line 16 "math\\formal_power_series\\arbitrary_modulo_convolution.hpp" namespace lib { /** * @brief 任意模数卷积 * @note 只适用于模数为 32 位 */ template <typename Int> std::vector<Int> convolve_mod(const std::vector<Int> &x, const std::vector<Int> &y, std::uint32_t mod) { using u32 = std::uint32_t; using Type = std::conditional_t<(sizeof(Int) <= 4), std::uint32_t, std::uint64_t>; static constexpr u32 M0 = 880803841, M1 = 897581057, M2 = 998244353; NTTCRT3<M0, M1, M2> crt(mod); using mod_t0 = MontModInt<M0>; using mod_t1 = MontModInt<M1>; using mod_t2 = MontModInt<M2>; int n = x.size(), m = y.size(); std::vector<mod_t0> x0(n), y0(m); std::vector<mod_t1> x1(n), y1(m); std::vector<mod_t2> x2(n), y2(m); for (int i = 0; i < n; ++i) { u32 v = static_cast<Type>(x[i]); x0[i] = v, x1[i] = v, x2[i] = v; } for (int i = 0; i < m; ++i) { u32 v = static_cast<Type>(y[i]); y0[i] = v, y1[i] = v, y2[i] = v; } auto res0 = convolve(x0, y0); auto res1 = convolve(x1, y1); auto res2 = convolve(x2, y2); int nm = res0.size(); std::vector<Int> res; res.reserve(nm); for (int i = 0; i < nm; ++i) res.emplace_back(crt(u32(res0[i]), u32(res1[i]), u32(res2[i]))); return res; } template <typename Int> std::vector<Int> convolve_cyclic_mod(const std::vector<Int> &x, const std::vector<Int> &y, std::uint32_t mod, int cyclen) { using u32 = std::uint32_t; using Type = std::conditional_t<(sizeof(Int) <= 4), std::uint32_t, std::uint64_t>; static constexpr u32 M0 = 880803841, M1 = 897581057, M2 = 998244353; NTTCRT3<M0, M1, M2> crt(mod); using mod_t0 = MontModInt<M0>; using mod_t1 = MontModInt<M1>; using mod_t2 = MontModInt<M2>; int n = x.size(), m = y.size(); std::vector<mod_t0> x0(n), y0(m); std::vector<mod_t1> x1(n), y1(m); std::vector<mod_t2> x2(n), y2(m); for (int i = 0; i < n; ++i) { u32 v = static_cast<Type>(x[i]); x0[i] = v, x1[i] = v, x2[i] = v; } for (int i = 0; i < m; ++i) { u32 v = static_cast<Type>(y[i]); y0[i] = v, y1[i] = v, y2[i] = v; } auto res0 = convolve_cyclic(x0, y0, cyclen); auto res1 = convolve_cyclic(x1, y1, cyclen); auto res2 = convolve_cyclic(x2, y2, cyclen); int nm = res0.size(); std::vector<Int> res; res.reserve(nm); for (int i = 0; i < nm; ++i) res.emplace_back(crt(u32(res0[i]), u32(res1[i]), u32(res2[i]))); return res; } } // namespace lib #line 1 "math\\modulo\\factorial_modulo_prime.hpp" /** * @brief factorial modulo prime / 阶乘模素数 * @docs docs/math/modulo/factorial_modulo_prime.md */ #line 10 "math\\modulo\\factorial_modulo_prime.hpp" #include <cmath> #line 12 "math\\modulo\\factorial_modulo_prime.hpp" #include <functional> #include <iterator> #include <numeric> #line 16 "math\\modulo\\factorial_modulo_prime.hpp" #line 1 "math\\formal_power_series\\sample_points_shift.hpp" /** * @brief sample points shift / 样本点平移 * @docs docs/math/formal_power_series/sample_points_shift.md */ #line 15 "math\\formal_power_series\\sample_points_shift.hpp" #line 1 "math\\formal_power_series\\prime_binomial.hpp" /** * @brief prime binomial / 素数用二项式系数 * */ #line 11 "math\\formal_power_series\\prime_binomial.hpp" namespace lib { template <typename mod_t> class PrimeBinomial { public: PrimeBinomial(int lim) { static std::uint64_t mod = 0; if (mod != mod_t::get_mod()) { mod = mod_t::get_mod(); fac_table.clear(); ifac_table.clear(); } if (fac_table.empty()) { fac_table.emplace_back(1); ifac_table.emplace_back(1); } init(lim); } ~PrimeBinomial() = default; /** * @brief 预处理 [0, n) 的阶乘和其逆元 */ static void init(int n) { if (int(fac_table.size()) < n) { int old_size = fac_table.size(); fac_table.resize(n); ifac_table.resize(n); for (int i = old_size; i < n; ++i) fac_table[i] = fac_table[i - 1] * mod_t(i); ifac_table.back() = mod_t(1) / fac_table.back(); for (int i = n - 2; i >= old_size; --i) ifac_table[i] = ifac_table[i + 1] * mod_t(i + 1); } } mod_t fac_unsafe(int n) const { return fac_table[n]; } mod_t ifac_unsafe(int n) const { return ifac_table[n]; } mod_t inv_unsafe(int n) const { return ifac_table[n] * fac_table[n - 1]; } mod_t choose_unsafe(int n, int k) const { // 返回 binom{n}{k} 注意上指标可以为负数但这里并未实现! return n >= k ? fac_table[n] * ifac_table[k] * ifac_table[n - k] : mod_t(0); } private: static inline std::vector<mod_t> fac_table, ifac_table; }; } // namespace lib #line 17 "math\\formal_power_series\\sample_points_shift.hpp" namespace lib::internal { /** * @brief 样本点平移(通过拉格朗日插值公式) * @note 不安全的算法 * @tparam mod_t 素数模数且点数不能超过模数! * @tparam ConvolveCyclicFuncType * @param n 返回值的点数 * @param pts f(0), f(1), …, f(k-1) 确定一个唯一的度数小于 k 的多项式 * @param m 平移距离 f(x) => f(x+m) * @param f 循环卷积函数 * @return std::vector<mod_t> f(m), f(m+1), …, f(m+n-1) */ template <typename mod_t, typename ConvolveCyclicFuncType> std::vector<mod_t> shift_sample_points_unsafe(int n, const std::vector<mod_t> &pts, mod_t m, ConvolveCyclicFuncType f) { if (n == 0) return {}; int s = pts.size(), deg_A = s - 1; PrimeBinomial<mod_t> bi(s); std::vector<mod_t> A(s), B(deg_A + n), p_sum(deg_A + n); for (int i = 0; i < s; ++i) { A[i] = pts[i] * bi.ifac_unsafe(i) * bi.ifac_unsafe(deg_A - i); if ((deg_A - i) & 1) A[i] = -A[i]; } for (int i = 0; i < deg_A + n; ++i) B[i] = m + mod_t(i - deg_A); std::partial_sum(B.begin(), B.end(), p_sum.begin(), std::multiplies<>()); assert(p_sum.back() != mod_t(0)); mod_t p_inv = mod_t(1) / p_sum.back(); for (int i = deg_A + n - 1; i > 0; --i) { mod_t t = p_inv * B[i]; B[i] = p_inv * p_sum[i - 1]; p_inv = t; } B[0] = p_inv; A = f(A, B, get_ntt_len(s + s - 1 + n - (s < 2 ? 0 : deg_A - 1) - 1)); mod_t coeff(m); for (int i = 1; i < s; ++i) coeff *= m - mod_t(i); for (int i = 0; i < n; ++i) A[i] = A[deg_A + i] * coeff, coeff *= (m + mod_t(i + 1)) * B[i]; A.resize(n); return A; } template <typename mod_t, typename ConvolveCyclicFuncType> std::vector<mod_t> shift_sample_points_unsafe(const std::vector<mod_t> &pts, mod_t m, ConvolveCyclicFuncType f) { return shift_sample_points_unsafe(pts.size(), pts, m, f); } } // namespace lib::internal namespace lib { template <typename mod_t, typename ConvolveCyclicFuncType> std::vector<mod_t> shift_sample_points(int n, const std::vector<mod_t> &pts, mod_t m, ConvolveCyclicFuncType f) { assert(n <= mod_t::get_mod()); assert(pts.size() <= mod_t::get_mod()); if (n == 0) return {}; using u64 = std::uint64_t; u64 m_64 = u64(m), k = pts.size(), nm1 = u64(m + mod_t(n - 1)); if (m_64 < k) { // f(0), …, f(m), …, f(k-1) if (m_64 + n <= k) { // f(0), …, f(m), …, f(n+m-1), …, f(k-1) return std::vector<mod_t>(pts.begin() + m_64, pts.begin() + m_64 + n); } else if (nm1 < k) { // f(0), …, f(n+m-1), …, f(m), …, f(k-1), …, f(mod-1) std::vector<mod_t> res; res.reserve(n); std::copy_n(pts.begin() + m_64, k - m_64, std::back_inserter(res)); std::copy_n( internal::shift_sample_points_unsafe(mod_t::get_mod() - k, pts, mod_t(k), f).begin(), mod_t::get_mod() - k, std::back_inserter(res)); std::copy_n(pts.begin(), nm1 + 1, std::back_inserter(res)); return res; } else { // f(0), …, f(m), …, f(k-1), …, f(n+m-1) std::vector<mod_t> res; res.reserve(n); std::copy_n(pts.begin() + m_64, k - m_64, std::back_inserter(res)); std::copy_n(internal::shift_sample_points_unsafe(m_64 + n - k, pts, mod_t(k), f).begin(), m_64 + n - k, std::back_inserter(res)); return res; } } else { // f(0), …, f(k-1), …, f(m) if (nm1 >= m_64) { // f(0), …, f(k-1), …, f(m), …, f(n+m-1), …, f(mod-1) return internal::shift_sample_points_unsafe(n, pts, m, f); } else if (nm1 < k) { // f(0), …, f(n+m-1), …, f(k-1), …, f(m), …, f(mod-1) std::vector<mod_t> res; res.reserve(n); std::copy_n(internal::shift_sample_points_unsafe(int(-m), pts, m, f).begin(), int(-m), std::back_inserter(res)); std::copy_n(pts.begin(), nm1 + 1, std::back_inserter(res)); return res; } else { // f(0), …, f(k-1), …, f(n+m-1), …, f(m), …, f(mod-1) std::vector<mod_t> res; res.reserve(n); std::copy_n(internal::shift_sample_points_unsafe(int(-m), pts, m, f).begin(), int(-m), std::back_inserter(res)); std::copy_n(pts.begin(), k, std::back_inserter(res)); std::copy_n(internal::shift_sample_points_unsafe(nm1 - k + 1, pts, mod_t(k), f).begin(), nm1 - k + 1, std::back_inserter(res)); return res; } } } template <typename mod_t, typename ConvolveCyclicFuncType> std::vector<mod_t> shift_sample_points(const std::vector<mod_t> &pts, mod_t m, ConvolveCyclicFuncType f) { return shift_sample_points(pts.size(), pts, m, f); } } // namespace lib #line 19 "math\\modulo\\factorial_modulo_prime.hpp" namespace lib { /** * @brief 素数模数的阶乘计算 * @note 在 O(p^{1/2}\log p) 时间预处理,单次询问 O(p^{1/2}) * @tparam mod_t 素数模数 */ template <typename mod_t> class FactorialModPrime { public: using u32 = std::uint32_t; using u64 = std::uint64_t; template <typename ConvolveCyclicFuncType> FactorialModPrime(ConvolveCyclicFuncType conv) : v_(static_cast<u64>(std::sqrt(modint_traits<mod_t>::get_mod()))) { const mod_t ONE(1); mod_t mv = mod_t(v_), iv = ONE / mv; block_prod_ = std::vector<mod_t>{ONE, mv + ONE}; block_prod_.reserve(v_ + 1); u64 mask = UINT64_C(1) << 63; u64 half_v_ = std::max(UINT64_C(1), v_ >> 1); while ((mask & half_v_) == 0) mask >>= 1; mask >>= 1; for (u32 d = 1; d != half_v_; mask >>= 1) { std::vector<mod_t> g0(shift_sample_points(d, block_prod_, mod_t(d + 1), conv)); std::vector<mod_t> g1(shift_sample_points(d << 1 | 1, block_prod_, mod_t(d) * iv, conv)); std::copy(g0.begin(), g0.end(), std::back_inserter(block_prod_)); d <<= 1; for (int i = 0; i <= d; ++i) block_prod_[i] *= g1[i]; if (mask & half_v_) { mod_t k(d | 1), dpv(v_ * k), prod(ONE); for (int i = 1; i <= d; ++i) prod *= (dpv += ONE); block_prod_.emplace_back(prod); d |= 1; for (int i = 0; i <= d; ++i) block_prod_[i] *= k, k += mv; } } std::partial_sum(block_prod_.begin(), block_prod_.end(), block_prod_.begin(), std::multiplies<>()); } ~FactorialModPrime() = default; mod_t fac(u64 n) const { if (n >= modint_traits<mod_t>::get_mod()) return mod_t(0); mod_t res(1); u64 pass = n / v_; if (pass >= block_prod_.size()) return mod_t(((modint_traits<mod_t>::get_mod() - 1 - n) & 1) ? 1 : -1) / fac(modint_traits<mod_t>::get_mod() - 1 - n); if (pass != 0) res *= block_prod_[pass - 1]; for (mod_t ONE(1), mpass(pass * v_), mn(n); mpass != mn;) res *= (mpass += ONE); return res; } private: const u64 v_; std::vector<mod_t> block_prod_; }; } // namespace lib #line 8 "remote_test\\yuki\\math\\502.0.test.cpp" int main() { #ifdef LOCAL std::freopen("in", "r", stdin), std::freopen("out", "w", stdout); #endif std::ios::sync_with_stdio(false); std::cin.tie(0); using mint = lib::MontModInt<1000000007>; long long v; std::cin >> v; std::cout << lib::FactorialModPrime<mint>([](const std::vector<mint> &x, const std::vector<mint> &y, int c) { return lib::convolve_cyclic_mod(x, y, mint::get_mod(), c); }).fac(v) << '\n'; return 0; }