結果

問題 No.1625 三角形の質問
ユーザー naoya_tnaoya_t
提出日時 2021-07-29 02:36:43
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
MLE  
実行時間 -
コード長 16,073 bytes
コンパイル時間 3,520 ms
コンパイル使用メモリ 233,972 KB
実行使用メモリ 620,548 KB
最終ジャッジ日時 2024-09-14 00:39:14
合計ジャッジ時間 62,619 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 162 ms
45,200 KB
testcase_02 AC 1,525 ms
197,412 KB
testcase_03 AC 1,077 ms
194,968 KB
testcase_04 AC 997 ms
174,788 KB
testcase_05 AC 2,118 ms
341,664 KB
testcase_06 MLE -
testcase_07 MLE -
testcase_08 MLE -
testcase_09 MLE -
testcase_10 MLE -
testcase_11 MLE -
testcase_12 MLE -
testcase_13 MLE -
testcase_14 MLE -
testcase_15 MLE -
testcase_16 AC 695 ms
211,196 KB
testcase_17 AC 1,449 ms
229,848 KB
testcase_18 AC 1,835 ms
202,336 KB
testcase_19 AC 1,741 ms
259,496 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function 'void solve(int, int, vvi&, vvi&)':
main.cpp:414:19: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17' [-Wc++17-extensions]
  414 |         for (auto [y, a] : tmp[x]) {
      |                   ^

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;

#define NDEBUG
#include <cassert>


typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> ii;
typedef pair<ll,ll> llll;
typedef pair<double,double> dd;

typedef vector<int> vi;
typedef vector<vector<int>> vvi;
typedef vector<ii> vii;
typedef vector<vector<ii>> vvii;
typedef vector<ll> vll;
typedef vector<vector<ll>> vvll;
typedef vector<bool> vb;
typedef vector<string> vs;
typedef vector<double> vd;

#define pb  push_back
#define eb  emplace_back
#define rep(var,n)  for(int var=0;var<(n);++var)
#define rep1(var,n)  for(int var=1;var<=(n);++var)
#define repC2(vari,varj,n)  for(int vari=0;vari<(n)-1;++vari)for(int varj=vari+1;varj<(n);++varj)
#define repC3(vari,varj,vark,n)  for(int vari=0;vari<(n)-2;++vari)for(int varj=vari+1;varj<(n)-1;++varj)for(int vark=varj+1;vark<(n);++vark)
#define ALL(c)  (c).begin(),(c).end()
#define RALL(c)  (c).rbegin(),(c).rend()
#define whole(f, x, ...)                                     \
    ([&](decltype((x)) whole) {                              \
        return (f)(begin(whole), end(whole), ##__VA_ARGS__); \
    })(x)
#define tr(i,c)  for(auto i=(c).begin(); i!=(c).end(); ++i)
#define found(s,e)  ((s).find(e)!=(s).end())
#define mset(arr,val)  memset(arr,val,sizeof(arr))
#define mid(x,y) ((x)+((y)-(x))/2)
#define IN(x,a,b) ((a)<=(x)&&(x)<=(b))
#define IN_(x,a,b) ((a)<=(x)&&(x)<(b))
#define tors(a) sort(ALL(a), greater<decltype(a[0])>())
#define nC2(n) ((ll)(n)*((n)-1)/2)

#define clamp(v,lo,hi) min(max(v,lo),hi)
#define ABS(x) max((x),-(x))
#define PQ(T) priority_queue<T,vector<T>,greater<T>>
#define CLEAR(a) a = decltype(a)()
template <typename T>
vector<T> vec(size_t len, T elem) { return vector<T>(len, elem); }

template<typename T1, typename T2> inline void amin(T1 & a, T2 const & b) { if (a>b) a=b; }
template<typename T1, typename T2> inline void amax(T1 & a, T2 const & b) { if (a<b) a=b; }

template <typename T>
void erase_one(multiset<T>& ms, T val) {
    auto iter = ms.find(val);
    if (iter != ms.end()) ms.erase(iter);
}

inline ll square(ll x) { return x * x; }
inline ll gcd(ll a, ll b) { while(a) swap(a, b%=a); return b; }
inline ll lcm(ll a, ll b) { return a/gcd(a,b)*b; }
template <typename T>
inline T mod(T a, T b) { return ((a % b) + b) % b; }















#define is_digit(c) ('0'<=(c)&&(c)<='9')
#define is_whitespace(c) ((c)==' '||(c)=='\n'||(c)=='\r'||(c)=='\t'||(c)==EOF)
void reader(int& x){
  x=0;
  bool neg=false; for(;;){ int k=getchar(); if(k=='-'){ neg=true; break; } if (is_digit(k)){ x=k-'0'; break;} }
  for(;;){ int k=getchar(); if (!is_digit(k)) break; x=x*10+k-'0'; }
  if(neg) x=-x; }
void reader(long long& x){
  x=0;
  bool neg=false; for(;;){ int k=getchar(); if(k=='-'){ neg=true; break; } if (is_digit(k)){ x=k-'0'; break; } }
  for(;;){ int k=getchar(); if (!is_digit(k)) break; x=x*10+k-'0'; }
  if(neg) x=-x; }
void reader(unsigned long long& x){
  x=0;
  for(;;){ int k=getchar(); if (is_digit(k)){ x=(unsigned long long)(k-'0'); break; } }
  for(;;){ int k=getchar(); if (!is_digit(k)) break; x=x*10+k-'0'; } }
int reader(char s[]){
  int c,i=0;
  for(;;){ c=getchar(); if (!is_whitespace(c)) break; } s[i++]=c;
  for(;;){ c=getchar(); if (is_whitespace(c)) break; s[i++]=c; }
  s[i]='\0'; return i; }
int reader(string& s){
  int c;
  for(;;){ c=getchar(); if (!is_whitespace(c)) break; } s.push_back(c);
  for(;;){ c=getchar(); if (is_whitespace(c)) break; s.push_back(c); }
  return s.size(); }
void reader(char& c){
  for(;;){ c=getchar(); if (!is_whitespace(c)) break; } }

void writer(int x, char c=0){
  int s=0; bool neg=false; char f[10]; if(x<0) neg=true,x=-x; if(x==0) f[s++]='0'; else while(x) f[s++]='0'+x%10,x/=10;
  if(neg) putchar('-'); while(s--) putchar(f[s]); if(c) putchar(c); }
void writer(long long x, char c=0){
  int s=0; bool neg=false; char f[20]; if(x<0) neg=true,x=-x; if(x==0) f[s++]='0'; else while(x) f[s++]='0'+x%10,x/=10;
  if(neg) putchar('-'); while(s--) putchar(f[s]); if(c) putchar(c); }
void writer(unsigned long long x, char c=0){
  int s=0; char f[20]; if(x==0) f[s++]='0'; else while(x) f[s++]='0'+x%10,x/=10;
  while(s--) putchar(f[s]); if(c) putchar(c); }
void writer(const string& x, char c=0){
  for(int i=0;i<x.size();++i) putchar(x[i]); if(c) putchar(c); }
void writer(const char x[], char c=0){
  for(int i=0;x[i]!='\0';++i) putchar(x[i]); if(c) putchar(c); }

template <class T,class S> void reader(T& x, S& y){ reader(x); reader(y); }
template <class T,class S,class U> void reader(T& x, S& y, U& z){ reader(x); reader(y); reader(z); }
template <class T,class S,class U,class V> void reader(T& x, S& y, U& z, V& w){ reader(x); reader(y); reader(z); reader(w); }
template <class T> vector<T> readerArray(int n){
  vector<T> ret(n); for(int i=0;i<n;++i) reader(ret[i]); return ret; }
template <class T> vector<vector<T>> readerMatrix(int n,int m=0){
  if (m==0) m = n; vector<vector<T>> ret(n); for(int i=0;i<n;++i) ret[i] = readerArray<T>(m); return ret; }

template <class T> void writerLn(T x){ writer(x,'\n'); }
template <class T,class S> void writerLn(T x, S y){ writer(x,' '); writer(y,'\n'); }
template <class T,class S,class U> void writerLn(T x, S y, U z){ writer(x,' '); writer(y,' '); writer(z,'\n'); }
template <class T,class S,class U,class V> void writerLn(T x, S y, U z, V v){ writer(x,' '); writer(y,' '); writer(z,' '); writer(v,'\n'); }
template <class T> void writerArrayLn(T x[], int n){
  if(n==0){ putchar('\n'); return; }
  for(int i=0;i<n-1;++i) writer(x[i],' '); writer(x[n-1],'\n'); }
template <class T> void writerArrayLn(vector<T>& x){ writerArrayLn(x.data(),(int)x.size()); }
template <class T> void writerArrayLnV(T x[], int n){ for(int i=0;i<n;++i) writerLn(x[i]); }
template <class T> void writerArrayLnV(vector<T>& x){ for(T xi: x) writerLn(xi); }
template <class T> void writerMatrix(vector<vector<T>>& x){
  int n = x.size(); if (n == 0) return;
  int m = x[0].size(); for (int i=0; i<n; ++i) writerArrayLn(x[i]); }

void readerEdges(size_t M,vector<int>& a,vector<int>& b,bool decrement=true){
  a.resize(M); b.resize(M);
  for(int i=0;i<M;++i){ reader(a[i]); reader(b[i]); if(decrement){ --a[i]; --b[i]; } } }
template <class W> void readerEdges(size_t M,vector<int>& a,vector<int>& b,vector<W>& c,bool decrement=true){
  a.resize(M); b.resize(M); c.resize(M);
  for(int i=0;i<M;++i){ reader(a[i]); reader(b[i]); reader(c[i]); if(decrement){ --a[i]; --b[i]; } } }
template <class S,class T> void readerEdges(size_t M,vector<int>& a,vector<int>& b,vector<S>& c,vector<T>& d,bool decrement=true){
  a.resize(M); b.resize(M); c.resize(M); d.resize(M);
  for(int i=0;i<M;++i){ reader(a[i]); reader(b[i]); reader(c[i]); reader(d[i]); if(decrement){ --a[i]; --b[i]; } } }

vector<vector<int>> make_nxt(int N, int M, vector<int>& a, vector<int>& b){
  vector<vector<int>> nxt(N);
  for(int i=0;i<M;++i){ nxt[a[i]].push_back(b[i]); nxt[b[i]].push_back(a[i]); }
  return nxt; }
template <class T> vector<vector<pair<int,T>>> make_nxt(int N, int M, vector<int>& a, vector<int>& b, vector<T>& c){
  vector<vector<pair<int,T>>> nxt(N);
  for(int i=0;i<M;++i){ nxt[a[i]].emplace_back(b[i],c[i]); nxt[b[i]].emplace_back(a[i],c[i]); }
  return nxt; }

template <typename T>
struct SegmentTree {
    int N;
    vector<T> buf_;
    using MERGER = function<T(T, T)>;
    MERGER merge;
    T ident;

    int ceil2(int size) {
        int n = 1;
        while (n < size) n *= 2;
        return n;
    }

    SegmentTree(MERGER merge, T ident) : merge(merge), ident(ident) { }
    SegmentTree(int size, MERGER merge, T ident) : merge(merge), ident(ident) {
        N = ceil2(size);
        buf_.assign(N * 2, ident);
    }
    SegmentTree(vector<T> ar, MERGER merge, T ident) : merge(merge), ident(ident) {
        init(ar);
    }
    void init(vector<T>& ar) {
        int size = ar.size();
        N = ceil2(size);
        buf_.assign(N * 2, ident);
        for (int i = 0; i < size; ++i) update(i, ar[i]);
    }

    void update(int i, T x) {
        i = N + i - 1;


        buf_[i] = merge(buf_[i], x);
        while (i > 0) {
            i = (i - 1) / 2;
            buf_[i] = merge(buf_[i * 2 + 1], buf_[i * 2 + 2]);
        }
    }

    T query(int lo, int hi) {
        return query(lo, hi, 0, 0, N);
    }
    T query(int a, int b, int k, int l, int r) {
        if (r <= a || b <= l) return ident;

        if (a <= l && r <= b) {
            return buf_[k];
        } else {
            T lv = query(a, b, 2 * k + 1, l, (l + r) / 2);
            T rb = query(a, b, 2 * k + 2, (l + r) / 2, r);
            return merge(lv, rb);
        }
    }

    void dump() {
    }
};

template <typename T>
struct MaxSegmentTree : SegmentTree<T> {
    MaxSegmentTree() : SegmentTree<T>([](T a, T b) { return max(a, b); }, numeric_limits<T>::min()) {}
    MaxSegmentTree(int size) : SegmentTree<T>(size, [](T a, T b) { return max(a, b); }, numeric_limits<T>::min()) {}
    MaxSegmentTree(vector<T> ar) : SegmentTree<T>(ar, [](T a, T b) { return max(a, b); }, numeric_limits<T>::min()) {}
};

template <typename T>
struct SegmentTreeFractionalCascading {
    vvii seg;
    vector<MaxSegmentTree<T>> rmqs;
    vvi LL, RR;
    int sz;

    SegmentTreeFractionalCascading(vector<vector<ii>>& ys, vector<T>& values) {
        sz = 1;
        while (sz < ys.size()) sz <<= 1;
        seg.resize(2 * sz - 1);
        LL.resize(2 * sz - 1);
        RR.resize(2 * sz - 1);
        rmqs.resize(2 * sz - 1);

        rep(k, ys.size()) {

            seg[k + (sz - 1)] = ys[k];
            vector<T> vals(seg[k + (sz - 1)].size());
            rep(i, seg[k + (sz - 1)].size()) vals[i] = values[seg[k + (sz - 1)][i].second];
            rmqs[k + (sz - 1)].init(vals);
        }



        for (int k = sz - 2; k >= 0; --k) {
            seg[k].resize(seg[2 * k + 1].size() + seg[2 * k + 2].size());
            LL[k].resize(seg[k].size() + 1);
            RR[k].resize(seg[k].size() + 1);
            std::merge(ALL(seg[2 * k + 1]), ALL(seg[2 * k + 2]), begin(seg[k]));

            vector<T> vals(seg[k].size());
            rep(i, seg[k].size()) {
                vals[i] = values[seg[k][i].second];
            }
            rmqs[k].init(vals);

            int tail1 = 0, tail2 = 0;
            rep(i, seg[k].size()) {
                while (tail1 < seg[2 * k + 1].size() && seg[2 * k + 1][tail1] < seg[k][i]) ++tail1;
                while (tail2 < seg[2 * k + 2].size() && seg[2 * k + 2][tail2] < seg[k][i]) ++tail2;
                LL[k][i] = tail1, RR[k][i] = tail2;
            }
            LL[k][seg[k].size()] = (int)seg[2 * k + 1].size();
            RR[k][seg[k].size()] = (int)seg[2 * k + 2].size();
        }
    }

    void update(int x, int y, int ylo_ix, int yhi_ix, int k, int xlo_ix, int xhi_ix, T newval) {
        if (ylo_ix >= yhi_ix) return;

        if (k >= seg.size()) return;
        if (!IN_(x, xlo_ix, xhi_ix)) return;

        if (ylo_ix + 1 == yhi_ix) {
            rmqs[k].update(ylo_ix, newval);
        }
        int xmi_ix = (xlo_ix + xhi_ix) >> 1;
        if (IN_(ylo_ix, 0, LL[k].size()) && IN_(yhi_ix, 0, LL[k].size())) {
            update(x, y, LL[k][ylo_ix], LL[k][yhi_ix], 2 * k + 1, xlo_ix, xmi_ix, newval);
        }
        if (IN_(ylo_ix, 0, RR[k].size()) && IN_(yhi_ix, 0, RR[k].size())) {
            update(x, y, RR[k][ylo_ix], RR[k][yhi_ix], 2 * k + 2, xmi_ix, xhi_ix, newval);
        }
    }
    void update(int x, int y, T newval) {
        int ylo_ix = lower_bound(ALL(seg[0]), ii(y, -1)) - begin(seg[0]);
        int yhi_ix = lower_bound(ALL(seg[0]), ii(y + 1, -1)) - begin(seg[0]);
        update(x, y, ylo_ix, yhi_ix, 0, 0, sz, newval);
    }

    inline T merge(T x, T y) { return max(x, y); }

    inline T query(int xlo, int xhi, int ylo_ix, int yhi_ix, int k, int xlo_ix, int xhi_ix) {
        if (ylo_ix > yhi_ix || xhi_ix <= xlo || xhi <= xlo_ix) {
            return numeric_limits<T>::min();
        } else if (xlo <= xlo_ix && xhi_ix <= xhi) {
            return rmqs[k].query(ylo_ix, yhi_ix);
        } else {
            int xmi_ix = (xlo_ix + xhi_ix) >> 1;
            return merge(query(xlo, xhi, LL[k][ylo_ix], LL[k][yhi_ix], 2 * k + 1, xlo_ix, xmi_ix), query(xlo, xhi, RR[k][ylo_ix], RR[k][yhi_ix], 2 * k + 2, xmi_ix, xhi_ix));
        }
    }

    T query(int xlo, int xhi, int ylo, int yhi) {
        int ylo_ix = lower_bound(ALL(seg[0]), ii(ylo, -1)) - begin(seg[0]);
        int yhi_ix = lower_bound(ALL(seg[0]), ii(yhi, -1)) - begin(seg[0]);
        return query(xlo, xhi, ylo_ix, yhi_ix, 0, 0, sz);
    }
};

ll calc_area(vi& triangle) {
    ll x1 = triangle[2] - triangle[0];
    ll y1 = triangle[3] - triangle[1];
    ll x2 = triangle[4] - triangle[0];
    ll y2 = triangle[5] - triangle[1];
    return ABS(x1 * y2 - x2 * y1);
}

void solve(int N, int Q, vvi& triangles, vvi& queries) {
    set<int> xs;
    set<ll> ys;
    vll area(N, 0);
    map<int, ll> q_area;
    rep(i, N) {
        for (int j = 0; j < 6; j += 2) {
            xs.insert(triangles[i][j]);
        }
        area[i] = calc_area(triangles[i]);
        ys.insert(area[i]);
    }
    rep(i, Q) {
        int L = queries[i].size();
        if (L == 6) {
            for (int j = 0; j < 6; j += 2) {
                xs.insert(queries[i][j]);
            }
            q_area[i] = calc_area(queries[i]);
            ys.insert(q_area[i]);
        } else {
            xs.insert(queries[i][0]);
            xs.insert(queries[i][1]);
        }
    }
    xs.insert(INT_MIN);
    xs.insert(INT_MAX);
    ys.insert(LLONG_MIN);
    ys.insert(LLONG_MAX);

    map<int, int> zx;
    int zxid = 0;
    for (int x : xs) {
        zx[x] = zxid++;
    }
    xs.clear();

    map<ll, int> zy;
    int zyid = 0;
    vll zyR;
    for (ll y : ys) {
        zy[y] = zyid++;
        zyR.pb(y);
    }
    ys.clear();

    vector<map<int, int>> tmp(zxid);

    auto prepare_point = [&](int xmin, int xmax) -> void {
        if (!found(tmp[xmin], xmax)) tmp[xmin][xmax] = zy[LLONG_MIN];
    };

    rep(i, N) {
        int xmin = INT_MAX, xmax = INT_MIN;
        for (int j = 0; j < 6; j += 2) {
            int x = zx[triangles[i][j]];
            amin(xmin, x);
            amax(xmax, x);
        }
        amax(tmp[xmin][xmax], zy[area[i]]);
    }
    area.clear();

    rep(i, Q) {
        int L = queries[i].size();
        int xmin = INT_MAX, xmax = INT_MIN;
        if (L == 6) {
            for (int j = 0; j < 6; j += 2) {
                int x = zx[queries[i][j]];
                amin(xmin, x);
                amax(xmax, x);
            }
            prepare_point(xmin, xmax);
        } else {
            xmin = zx[queries[i][0]];
            xmax = zx[queries[i][1]];
            prepare_point(xmin, xmax);
        }
    }

    vvii ar(zxid);
    vi values;
    int value_id = 0;
    rep(x, zxid) {
        for (auto [y, a] : tmp[x]) {
            ar[x].eb(y, value_id);
            values.pb(a);
            ++value_id;
        }
    }
    tmp.clear();
    assert(value_id == values.size());

    SegmentTreeFractionalCascading<int> seg(ar, values);
    ar.clear();
    values.clear();

    rep(i, Q) {
        int L = queries[i].size();
        int xmin = INT_MAX, xmax = INT_MIN;
        if (L == 6) {
            for (int j = 0; j < 6; j += 2) {
                int x = zx[queries[i][j]];
                amin(xmin, x);
                amax(xmax, x);
            }
            seg.update(xmin, xmax, zy[q_area[i]]);
        } else {
            int l = zx[queries[i][0]], r = zx[queries[i][1]];
            int res = seg.query(l, r, l, r+1);
            ll resR = (res >= 0) ? zyR[res] : LLONG_MIN;
            if (resR < 0) resR = -1;
            printf("%lld\n", resR);
        }
    }
}

int main() {
    int N, Q;
    reader(N, Q);
    vvi triangles(N, vi(6));
    rep(i, N) { triangles[i] = readerArray<int>(6); }
    vvi queries(Q);
    rep(i, Q) {
        int op;
        reader(op);
        if (op == 1) {
            queries[i] = readerArray<int>(6);
        } else {
            queries[i] = readerArray<int>(2);
        }
    }
    solve(N, Q, triangles, queries);
    return 0;
}
0