結果
問題 | No.1632 Sorting Integers (GCD of M) |
ユーザー |
![]() |
提出日時 | 2021-07-30 22:17:42 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 9,263 bytes |
コンパイル時間 | 2,394 ms |
コンパイル使用メモリ | 212,924 KB |
最終ジャッジ日時 | 2025-01-23 12:04:00 |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 59 |
ソースコード
#include <bits/stdc++.h>using namespace std;using LL = long long int;#define incII(i, l, r) for(LL i = (l) ; i <= (r); i++)#define incIX(i, l, r) for(LL i = (l) ; i < (r); i++)#define incXI(i, l, r) for(LL i = (l) + 1; i <= (r); i++)#define incXX(i, l, r) for(LL i = (l) + 1; i < (r); i++)#define decII(i, l, r) for(LL i = (r) ; i >= (l); i--)#define decIX(i, l, r) for(LL i = (r) - 1; i >= (l); i--)#define decXI(i, l, r) for(LL i = (r) ; i > (l); i--)#define decXX(i, l, r) for(LL i = (r) - 1; i > (l); i--)#define inc(i, n) incIX(i, 0, n)#define dec(i, n) decIX(i, 0, n)#define inc1(i, n) incII(i, 1, n)#define dec1(i, n) decII(i, 1, n)auto inII = [](auto x, auto l, auto r) { return (l <= x && x <= r); };auto inIX = [](auto x, auto l, auto r) { return (l <= x && x < r); };auto inXI = [](auto x, auto l, auto r) { return (l < x && x <= r); };auto inXX = [](auto x, auto l, auto r) { return (l < x && x < r); };auto setmin = [](auto & a, auto b) { return (b < a ? a = b, true : false); };auto setmax = [](auto & a, auto b) { return (b > a ? a = b, true : false); };auto setmineq = [](auto & a, auto b) { return (b <= a ? a = b, true : false); };auto setmaxeq = [](auto & a, auto b) { return (b >= a ? a = b, true : false); };#define PB push_back#define EB emplace_back#define MP make_pair#define MT make_tuple#define FI first#define SE second#define FR front()#define BA back()#define ALL(c) c.begin(), c.end()#define RALL(c) c.rbegin(), c.rend()#define RV(c) reverse(ALL(c))#define SC static_cast#define SI(c) SC<int>(c.size())#define SL(c) SC<LL >(c.size())#define RF(e, c) for(auto & e: c)#define SF(c, ...) for(auto & [__VA_ARGS__]: c)#define until(e) while(! (e))#define if_not(e) if(! (e))#define ef else if#define UR assert(false)auto * IS = & cin;auto * OS = & cout;array<string, 3> SEQ = { "", " ", "" };// inputtemplate<typename T> T in() { T a; (* IS) >> a; return a; }// input: tupletemplate<int I, typename U> void tin_(istream & is, U & t) {if constexpr(I < tuple_size<U>::value) { is >> get<I>(t); tin_<I + 1>(is, t); }}template<typename ... T> istream & operator>>(istream & is, tuple<T ...> & t) { tin_<0>(is, t); return is; }template<typename ... T> auto tin() { return in<tuple<T ...>>(); }// input: arraytemplate<typename T, size_t N> istream & operator>>(istream & is, array<T, N> & a) { RF(e, a) { is >> e; } return is; }template<typename T, size_t N> auto ain() { return in<array<T, N>>(); }// input: multi-dimensional vectortemplate<typename T> T vin() { T v; (* IS) >> v; return v; }template<typename T, typename N, typename ... M> auto vin(N n, M ... m) {vector<decltype(vin<T, M ...>(m ...))> v(n); inc(i, n) { v[i] = vin<T, M ...>(m ...); } return v;}// input: multi-column (tuple<vector>)template<typename U, int I> void colin_([[maybe_unused]] U & t) { }template<typename U, int I, typename A, typename ... B> void colin_(U & t) {get<I>(t).PB(in<A>()); colin_<U, I + 1, B ...>(t);}template<typename ... T> auto colin(int n) {tuple<vector<T> ...> t; inc(i, n) { colin_<tuple<vector<T> ...>, 0, T ...>(t); } return t;}// outputvoid out_([[maybe_unused]] string s) { }template<typename A> void out_([[maybe_unused]] string s, A && a) { (* OS) << a; }template<typename A, typename ... B> void out_(string s, A && a, B && ... b) { (* OS) << a << s; out_(s, b ...); }auto outF = [](auto x, auto y, auto z, auto ... a) { (* OS) << x; out_(y, a ...); (* OS) << z << flush; };auto out = [](auto ... a) { outF("", " " , "\n", a ...); };auto outS = [](auto ... a) { outF("", " " , " " , a ...); };auto outL = [](auto ... a) { outF("", "\n", "\n", a ...); };auto outN = [](auto ... a) { outF("", "" , "" , a ...); };// output: multi-dimensional vectortemplate<typename T> ostream & operator<<(ostream & os, vector<T> const & v) {os << SEQ[0]; inc(i, SI(v)) { os << (i == 0 ? "" : SEQ[1]) << v[i]; } return (os << SEQ[2]);}template<typename T> void vout_(T && v) { (* OS) << v; }template<typename T, typename A, typename ... B> void vout_(T && v, A a, B ... b) {inc(i, SI(v)) { (* OS) << (i == 0 ? "" : a); vout_(v[i], b ...); }}template<typename T, typename A, typename ... B> void vout (T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << a << flush; }template<typename T, typename A, typename ... B> void voutN(T && v, A a, B ... b) { vout_(v, a, b ...); (* OS) << flush; }// ---- ----template<typename T, T(* PLUS)(T, T), T(* MULT)(T, T), T(* ZERO)(), T(* UNIT)()> struct Matrix_ {int h, w;vector<vector<T>> v;explicit Matrix_(int h = 1): h(h), w(h), v(h, vector<T>(w, ZERO())) { }explicit Matrix_(int h, int w): h(h), w(w), v(h, vector<T>(w, ZERO())) { }Matrix_(vector<vector<T>> const & v): h(SI(v)), w(SI(v[0])), v(v) {inc(i, h) { assert(SI(v[i]) == w); }}vector<T> const & operator[](int i) const { return v.at(i); }vector<T> & operator[](int i) { return v.at(i); }static Matrix_ unit(int n) {Matrix_ a(n);inc(i, n) { a[i][i] = UNIT(); }return a;}friend Matrix_ operator*(Matrix_ const & a, Matrix_ const & b) {assert(a.w == b.h);Matrix_ c(a.h, b.w);inc(i, a.h) {inc(j, b.w) {inc(k, a.w) {c[i][j] = PLUS(c[i][j], MULT(a[i][k], b[k][j]));}}}return c;}friend Matrix_ operator^(Matrix_ a, LL b) {assert(a.h == a.w);assert(b >= 0);auto p = Matrix_::unit(a.h);while(b) {if(b & 1) { p *= a; }a *= a;b >>= 1;}return p;}friend Matrix_ & operator*=(Matrix_ & a, Matrix_ const & b) { return (a = a * b); }friend Matrix_ & operator^=(Matrix_ & a, LL b) { return (a = a ^ b); }friend Matrix_ & operator*=(Matrix_ & a, T b) {inc(i, a.h) {inc(j, a.w) {a[i][j] = MULT(a[i][j], b);}}return a;}friend Matrix_ operator*(Matrix_ a, T b) { return (a *= b); }friend Matrix_ operator*(T b, Matrix_ a) { return (a *= b); }friend ostream & operator<<(ostream & s, Matrix_ const & a) {inc(i, a.h) { s << a[i] << endl; }return s;}};template<typename T> T PLUS(T a, T b) { return a + b; };template<typename T> T MULT(T a, T b) { return a * b; };template<typename T> T ZERO() { return 0; };template<typename T> T UNIT() { return 1; };template<typename T> using Matrix = Matrix_<T, PLUS<T>, MULT<T>, ZERO<T>, UNIT<T>>;// ----template<int N> class DynModInt {private:static LL M;LL v;pair<LL, LL> ext_gcd(LL a, LL b) {if(b == 0) { assert(a == 1); return { 1, 0 }; }auto p = ext_gcd(b, a % b);return { p.SE, p.FI - (a / b) * p.SE };}public:DynModInt() { v = 0; }DynModInt(LL vv) { assert(M > 0); v = vv; if(abs(v) >= M) { v %= M; } if(v < 0) { v += M; } }static LL & mod() { return M; }LL val() { return v; }DynModInt inv() { return ext_gcd(M, v).SE; }DynModInt exp(LL b) {DynModInt p = 1, a = v; if(b < 0) { a = a.inv(); b = -b; }while(b) { if(b & 1) { p *= a; } a *= a; b >>= 1; }return p;}friend bool operator< (DynModInt a, DynModInt b) { return (a.v < b.v); }friend bool operator> (DynModInt a, DynModInt b) { return (a.v > b.v); }friend bool operator<=(DynModInt a, DynModInt b) { return (a.v <= b.v); }friend bool operator>=(DynModInt a, DynModInt b) { return (a.v >= b.v); }friend bool operator==(DynModInt a, DynModInt b) { return (a.v == b.v); }friend bool operator!=(DynModInt a, DynModInt b) { return (a.v != b.v); }friend DynModInt operator+ (DynModInt a ) { return DynModInt(+a.v); }friend DynModInt operator- (DynModInt a ) { return DynModInt(-a.v); }friend DynModInt operator+ (DynModInt a, DynModInt b) { return DynModInt(a.v + b.v); }friend DynModInt operator- (DynModInt a, DynModInt b) { return DynModInt(a.v - b.v); }friend DynModInt operator* (DynModInt a, DynModInt b) { return DynModInt(a.v * b.v); }friend DynModInt operator/ (DynModInt a, DynModInt b) { return a * b.inv(); }friend DynModInt operator^ (DynModInt a, LL b) { return a.exp(b); }friend DynModInt & operator+=(DynModInt & a, DynModInt b) { return (a = a + b); }friend DynModInt & operator-=(DynModInt & a, DynModInt b) { return (a = a - b); }friend DynModInt & operator*=(DynModInt & a, DynModInt b) { return (a = a * b); }friend DynModInt & operator/=(DynModInt & a, DynModInt b) { return (a = a / b); }friend DynModInt & operator^=(DynModInt & a, LL b) { return (a = a ^ b); }friend istream & operator>>(istream & s, DynModInt & b) { s >> b.v; b = DynModInt(b.v); return s; }friend ostream & operator<<(ostream & s, DynModInt b) { return (s << b.v); }};template<int N> LL DynModInt<N>::M = 0;// ----using DMI = DynModInt<0>;int main() {auto n = in<int>();auto c = vin<int>(9);int g = 0;inc(i, 9) { if(c[i] == 0) { continue; }inc(j, i) { if(c[j] == 0) { continue; }g = gcd(g, 9 * (i - j));}}DMI::mod() = (g == 0 ? 1'000'000'007 : g);auto f = [&](int x) -> DMI {Matrix<DMI> m({ { 10, 0 }, { 1, 1 } }), v({ { 0, 1 } });return (v * (m ^ x))[0][0];};DMI s = 0;LL sum = 0;inc(i, 9) { s += (i + 1) * f(c[i]) * (DMI(10) ^ sum); sum += c[i]; }out(gcd(s.val(), g));}