結果
問題 | No.1631 Sorting Integers (Multiple of K) Easy |
ユーザー |
![]() |
提出日時 | 2021-07-30 22:57:11 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2,413 ms / 3,000 ms |
コード長 | 4,251 bytes |
コンパイル時間 | 2,297 ms |
コンパイル使用メモリ | 198,476 KB |
最終ジャッジ日時 | 2025-01-23 12:38:22 |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 28 |
ソースコード
#include <bits/stdc++.h>//#include<boost/multiprecision/cpp_int.hpp>//#include<boost/multiprecision/cpp_dec_float.hpp>//#include <atcoder/all>using namespace std;#define rep(i, a) for (int i = (int)0; i < (int)a; ++i)#define rrep(i, a) for (int i = (int)a; i > -1; --i)#define REP(i, a, b) for (int i = (int)a; i < (int)b; ++i)#define RREP(i, a, b) for (int i = (int)a; i > b; --i)#define repl(i, a) for (ll i = (ll)0; i < (ll)a; ++i)#define pb push_back#define eb emplace_back#define all(x) x.begin(), x.end()#define rall(x) x.rbegin(), x.rend()#define popcount __builtin_popcount#define popcountll __builtin_popcountll#define fi first#define se secondusing ll = long long;constexpr ll mod = 1e9 + 7;constexpr ll mod_998244353 = 998244353;constexpr ll INF = 1LL << 60;// #pragma GCC target("avx2")// #pragma GCC optimize("O3")// #pragma GCC optimize("unroll-loops")// using lll=boost::multiprecision::cpp_int;// using// Double=boost::multiprecision::number<boost::multiprecision::cpp_dec_float<128>>;//仮数部が1024桁template <class T>inline bool chmin(T &a, T b){if (a > b){a = b;return true;}return false;}template <class T>inline bool chmax(T &a, T b){if (a < b){a = b;return true;}return false;}ll mypow(ll x, ll n, const ll &p = -1){ // x^nをmodで割った余りif (p != -1){x = (x % p + p) % p;}ll ret = 1;while (n > 0){if (n & 1){if (p != -1)ret = (ret * x) % p;elseret *= x;}if (p != -1)x = (x * x) % p;elsex *= x;n >>= 1;}return ret;}struct myrand{random_device seed;mt19937 mt;myrand():mt(seed()){}int operator()(int a,int b){//[a,b)uniform_int_distribution<int>dist(a,b-1);return dist(mt);}};//using namespace atcoder;//------------------------//------------------------//------------------------//------------------------//------------------------template<int mod>struct Modint{int x;Modint():x(0){}Modint(int64_t y):x((y%mod+mod)%mod){}Modint &operator+=(const Modint &p){if((x+=p.x)>=mod)x -= mod;return *this;}Modint &operator-=(const Modint &p){if((x+=mod-p.x)>=mod)x -= mod;return *this;}Modint &operator*=(const Modint &p){x = (1LL * x * p.x) % mod;return *this;}Modint &operator/=(const Modint &p){*this *= p.inverse();return *this;}Modint operator-() const { return Modint(-x); }Modint operator+(const Modint &p) const{return Modint(*this) += p;}Modint operator-(const Modint &p) const{return Modint(*this) -= p;}Modint operator*(const Modint &p) const{return Modint(*this) *= p;}Modint operator/(const Modint &p) const{return Modint(*this) /= p;}bool operator==(const Modint &p) const { return x == p.x; }bool operator!=(const Modint &p) const{return x != p.x;}Modint inverse() const{//非再帰拡張ユークリッドint a = x, b = mod, u = 1, v = 0;while(b>0){int t = a / b;swap(a -= t * b, b);swap(u -= t * v, v);}return Modint(u);}Modint pow(int64_t n) const{//繰り返し二乗法Modint ret(1), mul(x);while(n>0){if(n&1)ret *= mul;mul *= mul;n >>= 1;}return ret;}friend ostream &operator<<(ostream &os,const Modint &p){return os << p.x;}};using modint = Modint<mod>;using modint2= Modint<mod_998244353>;ll dp[1<<14][1005];void solve(){int n,k;cin>>n>>k;vector<int>c(9);rep(i,9)cin>>c[i];auto cc=c;vector<int>d(n);rep(i,n){rep(j,9){if(c[j]>0){d[i]=j+1;c[j]--;break;}}}c=cc;memset(dp,0,sizeof(dp));dp[0][0]=1;rep(bit,1<<n){rep(i,k){rep(j,n){if(bit&1<<j)continue;ll nk=i+d[j]*mypow(10,popcount(bit));nk%=k;dp[bit|1<<j][nk]+=dp[bit][i];}}}vector<ll>fact(25,1);rep(i,20)fact[i+1]=fact[i]*(i+1);ll ans=dp[(1<<n)-1][0];rep(i,9)ans/=fact[c[i]];cout<<ans<<"\n";}int main(){ios::sync_with_stdio(false);cin.tie(nullptr);cout << fixed << setprecision(15);solve();return 0;}