結果
| 問題 |
No.1678 Coin Trade (Multiple)
|
| コンテスト | |
| ユーザー |
stoq
|
| 提出日時 | 2021-08-01 17:31:17 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 3,846 bytes |
| コンパイル時間 | 4,412 ms |
| コンパイル使用メモリ | 274,952 KB |
| 最終ジャッジ日時 | 2025-01-23 13:11:57 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 30 TLE * 26 |
ソースコード
#define MOD_TYPE 1
#pragma region Macros
#include <bits/stdc++.h>
using namespace std;
#include <atcoder/all>
using namespace atcoder;
#if 0
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
using Int = boost::multiprecision::cpp_int;
using lld = boost::multiprecision::cpp_dec_float_100;
#endif
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
using ll = long long int;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pld = pair<ld, ld>;
template <typename Q_type>
using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;
constexpr ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353);
//using mint = static_modint<MOD>;
constexpr int INF = (int)1e9 + 10;
constexpr ll LINF = (ll)4e18;
constexpr double PI = acos(-1.0);
constexpr double EPS = 1e-11;
constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};
constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};
#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)
#define repi(i, n) REPI(i, 0, n)
#define MP make_pair
#define MT make_tuple
#define YES(n) cout << ((n) ? "YES" : "NO") << "\n"
#define Yes(n) cout << ((n) ? "Yes" : "No") << "\n"
#define possible(n) cout << ((n) ? "possible" : "impossible") << "\n"
#define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n"
#define Yay(n) cout << ((n) ? "Yay!" : ":(") << "\n"
#define all(v) v.begin(), v.end()
#define NP(v) next_permutation(all(v))
#define dbg(x) cerr << #x << ":" << x << "\n";
struct io_init
{
io_init()
{
cin.tie(0);
ios::sync_with_stdio(false);
cout << setprecision(30) << setiosflags(ios::fixed);
};
} io_init;
template <typename T>
inline bool chmin(T &a, T b)
{
if (a > b)
{
a = b;
return true;
}
return false;
}
template <typename T>
inline bool chmax(T &a, T b)
{
if (a < b)
{
a = b;
return true;
}
return false;
}
inline ll CEIL(ll a, ll b)
{
return (a + b - 1) / b;
}
template <typename A, size_t N, typename T>
inline void Fill(A (&array)[N], const T &val)
{
fill((T *)array, (T *)(array + N), val);
}
template <typename T, typename U>
constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept
{
is >> p.first >> p.second;
return is;
}
template <typename T, typename U>
constexpr ostream &operator<<(ostream &os, pair<T, U> &p) noexcept
{
os << p.first << " " << p.second;
return os;
}
#pragma endregion
// 流す流量が一定の場合、負辺を除去できる
struct mcf_graph_neg
{
int n;
vector<tuple<int, int, ll, ll>> v;
mcf_graph_neg(int n) : n(n) {}
inline void add_edge(int from, int to, ll cap, ll cost)
{
v.push_back({from, to, cap, cost});
}
pair<ll, ll> flow(int s, int t, ll limit)
{
atcoder::mcf_graph<ll, ll> G(n + 2);
const int S = n, T = n + 1;
G.add_edge(S, s, limit, 0);
G.add_edge(t, T, limit, 0);
ll capsum = 0, sum = 0;
for (auto [u, v, cap, cost] : v)
{
if (cost >= 0)
{
G.add_edge(u, v, cap, cost);
}
else
{
sum += cap * cost;
capsum += cap;
G.add_edge(S, v, cap, 0);
G.add_edge(v, u, cap, -cost);
G.add_edge(u, T, cap, 0);
}
}
auto [cap, cost] = G.flow(S, T, limit + capsum);
return {cap, cost + sum};
}
};
void solve()
{
int n, k;
cin >> n >> k;
vector<ll> a(n);
vector<int> m(n);
mcf_graph_neg G(n);
rep(i, n)
{
cin >> a[i] >> m[i];
rep(j, m[i])
{
int t;
cin >> t;
t--;
G.add_edge(t, i, 1, a[t] - a[i]);
}
}
rep(i, n - 1)
{
G.add_edge(i, i + 1, n, 0);
}
auto [cap, cost] = G.flow(0, n - 1, k);
cout << -cost << "\n";
}
int main()
{
solve();
}
stoq