結果

問題 No.1661 Sum is Prime (Hard Version)
ユーザー LayCurse
提出日時 2021-08-01 20:10:56
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
RE  
実行時間 -
コード長 17,061 bytes
コンパイル時間 3,095 ms
コンパイル使用メモリ 235,840 KB
最終ジャッジ日時 2025-01-23 13:13:42
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 20 RE * 2
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("inline")
#include<bits/stdc++.h>
using namespace std;
template<class T> struct cLtraits_identity{
using type = T;
}
;
template<class T> using cLtraits_try_make_signed =
typename conditional<
is_integral<T>::value,
make_signed<T>,
cLtraits_identity<T>
>::type;
template <class S, class T> struct cLtraits_common_type{
using tS = typename cLtraits_try_make_signed<S>::type;
using tT = typename cLtraits_try_make_signed<T>::type;
using type = typename common_type<tS,tT>::type;
}
;
void*wmem;
char memarr[96000000];
template<class S, class T> inline auto max_L(S a, T b)
-> typename cLtraits_common_type<S,T>::type{
return (typename cLtraits_common_type<S,T>::type) a >= (typename cLtraits_common_type<S,T>::type) b ? a : b;
}
template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){
static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
(*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] );
(*arr)=(T*)(*mem);
(*mem)=((*arr)+x);
}
template<class T> inline void walloc1d(T **arr, int x1, int x2, void **mem = &wmem){
walloc1d(arr, x2-x1, mem);
(*arr) -= x1;
}
#define ISPRIME_PRE_CALC_SIZE 1000000
char isPrime_prime_table[ISPRIME_PRE_CALC_SIZE];
template<class T> inline int isPrime(T n);
void isPrime32_init(void);
int isPrime32_sub(int b, unsigned n);
int isPrime32(unsigned n);
int isPrime64_sub(long long b, unsigned long long n);
int isPrime64(unsigned long long n);
struct Rand{
unsigned x;
unsigned y;
unsigned z;
unsigned w;
Rand(void){
x=123456789;
y=362436069;
z=521288629;
w=(unsigned)time(NULL);
}
Rand(unsigned seed){
x=123456789;
y=362436069;
z=521288629;
w=seed;
}
inline unsigned get(void){
unsigned t;
t = (x^(x<<11));
x=y;
y=z;
z=w;
w = (w^(w>>19))^(t^(t>>8));
return w;
}
inline double getUni(void){
return get()/4294967296.0;
}
inline int get(int a){
return (int)(a*getUni());
}
inline int get(int a, int b){
return a+(int)((b-a+1)*getUni());
}
inline long long get(long long a){
return(long long)(a*getUni());
}
inline long long get(long long a, long long b){
return a+(long long)((b-a+1)*getUni());
}
inline double get(double a, double b){
return a+(b-a)*getUni();
}
inline int getExp(int a){
return(int)(exp(getUni()*log(a+1.0))-1.0);
}
inline int getExp(int a, int b){
return a+(int)(exp(getUni()*log((b-a+1)+1.0))-1.0);
}
}
;
inline void my_putchar_unlocked(const int k){
putchar_unlocked(k);
}
inline void wt_L(char a){
my_putchar_unlocked(a);
}
inline void wt_L(long long x){
int s=0;
int m=0;
char f[20];
if(x<0){
m=1;
x=-x;
}
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
if(m){
my_putchar_unlocked('-');
}
while(s--){
my_putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(const char c[]){
int i=0;
for(i=0;c[i]!='\0';i++){
my_putchar_unlocked(c[i]);
}
}
template<class T> inline T pow2_L(T a){
return a*a;
}
inline long long Isqrt_f_L(const long long n){
long long r = sqrt(n);
r =max_L(r-2, 0);
while((pow2_L((r+1)))<= n ){
r++;
}
return r;
}
long long llReader(long long mn, long long mx, char nx){
int i;
int fg = 0;
int m = 1;
long long res = 0;
double tmp = 0;
for(;;){
i = getchar();
if(fg==0 && i=='-'){
fg++;
m = -1;
}
else if('0' <= i && i <= '9'){
fg++;
res = 10 * res + i - '0';
tmp = 10 * tmp + i - '0';
assert(tmp < 1e20);
}
else{
break;
}
}
assert(tmp / 2 <= res);
assert((m==1 && fg >= 1) || (m==-1 && fg >= 2));
assert(mn <= m * res && m * res <= mx);
assert(i == nx);
return m * res;
}
vector<long long> ppp(20000000+1);
long long solve1(long long L, long long R){
int i;
long long res = 0;
for(i=0;i<20000000+1;i++){
if(L<=i && i<=R && ppp[i]){
res++;
}
}
for(i=0;i<20000000+1;i++){
if(2*L+1<=i && i<=2*R-1 && ppp[i]){
res++;
}
}
return res;
}
long long solve2(long long L, long long R){
long long k;
long long a;
long long b;
long long c;
long long res = 0;
for(a=(L);a<(R+1);a++){
for(b=(a);b<(R+1);b++){
c = 0;
for(k=(a);k<(b+1);k++){
c += k;
}
if(isPrime(c)){
res++;
}
}
}
return res;
}
int ps;
int p[1000000];
long long memo[] = {11078937,21336326,31324703,41146179,50847534,60454705,69985473,79451833,88862422,98222287,107540122,116818447,126062167,135270258
    ,144449537,153600805,162725196,171827136,180906194,189961812,198996103,208013454,217011319,225991743,234954223,243902342,252834065,261751864
    ,270655552,279545368,288422869,297285198,306137611,314977166,323804352,332620900,341426904,350221825,359006517,367783654,376549859,385307831
    ,394055910,402793457,411523195,420243162,428958595,437663672,446362736,455052511,463733626,472408200,481074475,489736021,498388617,507036251
    ,515673696,524309392,532936342,541555851,550170437,558778993,567382703,575978253,584570200,593155089,601735269,610308664,618878615,627440336
    ,635997249,644550922,653099304,661643304,670180516,678714823,687242934,695766925,704286233,712799821,721310048,729813991,738315156,746813071
    ,755305935,763794029,772276773,780756650,789230673,797703398,806169530,814633249,823092766,831548431,840000027,848450250,856895823,865335133
    ,873772692,882206716};
bitset<500000> b;
long long solve3sub(long long n){
int i;
long long s;
long long k;
long long res;
if(n < 1000000){
for(i=0;i<ps;i++){
if(p[i] > n){
break;
}
}
return i;
}
s = n / 200000000;
if(s){
res = memo[s-1];
s *= 200000000;
}
else{
res = ps;
s = 1000000;
}
for(;;s+=1000000){
b.set();
for(i=1;;i++){
k = (long long) p[i] * p[i] - s;
if(k >= 1000000){
break;
}
if(k < 0){
k += ((-k+p[i]-1) / p[i]) * p[i];
}
if(k % 2 == 0){
k += p[i];
}
k /= 2;
while(k < 500000){
b.reset(k);
k += p[i];
}
}
if(n-s < 1000000){
for(i=1;i<=n-s;i+=2){
res += b[i/2];
}
break;
}
res += b.count();
}
return res;
}
long long solve3(long long L, long long R){
return solve3sub(2*R) - solve3sub(2*L) + solve3sub(R) - solve3sub(L-1);
}
long long cntPrime(long long n, void *mem = wmem){
int i;
int j;
int sn;
char*isp;
long long*s1;
long long*s2;
long long x;
long long c = -1;
if(n <= 1){
return 0;
}
if(n == 2){
return 1;
}
sn =Isqrt_f_L(n);
walloc1d(&s1, sn+1, &mem);
walloc1d(&s2, sn+1, &mem);
walloc1d(&isp, sn+1, &mem);
s1[0] = 0;
for(i=(1);i<(sn+1);i++){
s1[i] = i - 1;
}
for(i=(1);i<(sn+1);i++){
s2[i] = n/i - 1;
}
for(i=(2);i<(sn+1);i++){
isp[i] = 1;
}
for(i=(2);i<(sn+1);i++){
if(isp[i]){
for(j=2*i;j<=sn;j+=i){
isp[j] = 0;
}
c++;
for(j=(1);j<(sn+1);j++){
if((long long)i*i*j > n){
goto gEg5UqEA;
}
x = n / j / i;
if(x <= sn){
s2[j] -= s1[x] - c;
}
else{
s2[j] -= s2[i*j] - c;
}
}
for(j=(sn+1)-1;j>=((long long)i*i);j--){
s1[j] -= s1[j/i] - c;
}
}
gEg5UqEA:;
}
return s2[1];
}
long long solve4(long long L, long long R){
return cntPrime(2*R) - cntPrime(2*L) + cntPrime(R) - cntPrime(L-1);
}
int main(){
wmem = memarr;
{
isPrime32_init();
}
long long L;
long long R;
long long res;
L = llReader(1, 10000000000LL-1, ' ');
R = llReader(L, 10000000000LL-1, '\n');
assert(getchar() == EOF);
res = solve4(L,R);
wt_L(res);
wt_L('\n');
return 0;
int i;
int j;
for(i=2;i<20000000+1;i++){
ppp[i] = 1;
}
for(i=2;i<20000000+1;i++){
if(ppp[i]){
for(j=2*i;j<20000000+1;j+=i){
ppp[j] = 0;
}
}
}
p[2] = 1;
for(i=3;i<1000000;i+=2){
p[i] = 1;
}
for(i=3;i<1000;i+=2){
if(p[i]){
for(j=i*i;j<1000000;j+=i){
p[j] = 0;
}
}
}
for(i=0;i<1000000;i++){
if(p[i]){
p[ps++] = i;
}
}
if(1){
int xtzQOlbs;
long long L;
long long R;
long long r1;
long long r2;
long long r3;
long long r4;
Rand rnd;
puts("");
for(L=(1);L<(30);L++){
for(R=(L);R<(30);R++){
r1 = solve1(L,R);
r2 = solve2(L,R);
r3 = solve3(L,R);
r4 = solve4(L,R);
wt_L(L);
wt_L(' ');
wt_L(R);
wt_L(' ');
wt_L(":");
wt_L(' ');
wt_L(r1);
wt_L(' ');
wt_L(r2);
wt_L(' ');
wt_L(r3);
wt_L(' ');
wt_L(r4);
wt_L('\n');
assert(r1==r2 && r2==r3 && r3==r4);
}
}
for(xtzQOlbs=(0);xtzQOlbs<(100);xtzQOlbs++){
L = rnd.get(1LL, 10000000000LL);
R = rnd.get(1LL, 10000000000LL);
if(L > R){
swap(L, R);
}
;
r3 = solve3(L,R);
r4 = solve4(L,R);
wt_L(L);
wt_L(' ');
wt_L(R);
wt_L(' ');
wt_L(":");
wt_L(' ');
wt_L(r3);
wt_L(' ');
wt_L(r4);
wt_L('\n');
assert(r3==r4);
}
}
return 0;
}
template<class T> inline int isPrime(T n){
T i;
if(n<=1){
return 0;
}
if(n <= (1ULL<<32) - 1){
return isPrime32(n);
}
if(n <= (1ULL<<63) - 1 + (1ULL<<63)){
return isPrime64(n);
}
if(n<=3){
return 1;
}
if(n%2==0){
return 0;
}
for(i=3;i*i<=n;i+=2){
if(n%i==0){
return 0;
}
}
return 1;
}
int isPrime32_sub(int b, unsigned n){
unsigned i;
unsigned t = 0;
unsigned u = n-1;
unsigned long long nw;
unsigned long long nx;
while(!(u&1)){
t++;
u >>= 1;
}
nw = 1;
nx = b % n;
while(u){
if(u&1){
nw = (nw * nx) % n;
}
nx = (nx * nx) % n;
u >>= 1;
}
for(i=(0);i<(t);i++){
nx = (nw * nw) % n;
if(nx == 1 && nw != 1 && nw != n-1){
return 0;
}
nw = nx;
}
if(nw == 1){
return 1;
}
return 0;
}
int isPrime32(unsigned n){
if(n < 100000){
return isPrime_prime_table[n];
}
if(n % 2 == 0){
return 0;
}
if(!isPrime32_sub(2,n)){
return 0;
}
if(n<=1000000){
if(!isPrime32_sub(3,n)){
return 0;
}
}
else{
if(!isPrime32_sub(7,n)){
return 0;
}
if(!isPrime32_sub(61,n)){
return 0;
}
}
return 1;
}
int isPrime64_sub(long long b, unsigned long long n){
unsigned long long i;
unsigned long long t = 0;
unsigned long long u = n-1;
__uint128_t nw;
__uint128_t nx;
while(!(u&1)){
t++;
u >>= 1;
}
nw = 1;
nx = b % n;
while(u){
if(u&1){
nw = (nw * nx) % n;
}
nx = (nx * nx) % n;
u >>= 1;
}
for(i=(0);i<(t);i++){
nx = (nw * nw) % n;
if(nx == 1 && nw != 1 && nw != n-1){
return 0;
}
nw = nx;
}
if(nw == 1){
return 1;
}
return 0;
}
int isPrime64(unsigned long long n){
if(n < 100000){
return isPrime_prime_table[n];
}
if(n < (1ULL<<32)){
return isPrime32(n);
}
if(n % 2 == 0){
return 0;
}
if(!isPrime64_sub(2,n)){
return 0;
}
if(n <= 21652684502221ULL){
if(!isPrime64_sub(1215,n)){
return 0;
}
if(!isPrime64_sub(34862,n)){
return 0;
}
if(!isPrime64_sub(574237825,n)){
return 0;
}
}
else{
if(!isPrime64_sub(325,n)){
return 0;
}
if(!isPrime64_sub(9375,n)){
return 0;
}
if(!isPrime64_sub(28178,n)){
return 0;
}
if(!isPrime64_sub(450775,n)){
return 0;
}
if(!isPrime64_sub(9780504,n)){
return 0;
}
if(!isPrime64_sub(1795265022,n)){
return 0;
}
}
return 1;
}
void isPrime32_init(void){
int i;
int j;
int k;
k =Isqrt_f_L(ISPRIME_PRE_CALC_SIZE);
for(i=(2);i<(ISPRIME_PRE_CALC_SIZE);i++){
isPrime_prime_table[i] = 1;
}
for(i=(2);i<(k+1);i++){
if(isPrime_prime_table[i]){
for(j=(i*i);j<(ISPRIME_PRE_CALC_SIZE);j+=(i)){
isPrime_prime_table[j] = 0;
}
}
}
}
// cLay version 20210717-1 [beta]
// --- original code ---
// ll llReader(ll mn, ll mx, char nx){
// int i, fg = 0, m = 1;
// ll res = 0; double tmp = 0;
//
// for(;;){
// i = getchar();
// if(fg==0 && i=='-'){
// fg++;
// m = -1;
// } else if('0' <= i <= '9'){
// fg++;
// res = 10 * res + i - '0';
// tmp = 10 * tmp + i - '0';
// assert(tmp < 1e20);
// } else {
// break;
// }
// }
// assert(tmp / 2 <= res);
// assert((m==1 && fg >= 1) || (m==-1 && fg >= 2));
// assert(mn <= m * res <= mx);
// assert(i == nx);
// return m * res;
// }
//
//
// vector<ll> ppp(2d7+1);
// ll solve1(ll L, ll R){
// int i;
// ll res = 0;
// for(i=0;i<2d7+1;i++) if(L<=i<=R && ppp[i]) res++;
// for(i=0;i<2d7+1;i++) if(2*L+1<=i<=2*R-1 && ppp[i]) res++;
// return res;
// }
//
// ll solve2(ll L, ll R){
// ll k, a, b, c, res = 0;
// rep(a,L,R+1) rep(b,a,R+1){
// c = 0;
// rep(k,a,b+1) c += k;
// if(isPrime(c)) res++;
// }
// return res;
// }
//
//
// int ps, p[1000000];
// ll memo[] = {11078937,21336326,31324703,41146179,50847534,60454705,69985473,79451833,88862422,98222287,107540122,116818447,126062167,135270258
    ,144449537,153600805,162725196,171827136,180906194,189961812,198996103,208013454,217011319,225991743,234954223,243902342,252834065,261751864
    ,270655552,279545368,288422869,297285198,306137611,314977166,323804352,332620900,341426904,350221825,359006517,367783654,376549859,385307831
    ,394055910,402793457,411523195,420243162,428958595,437663672,446362736,455052511,463733626,472408200,481074475,489736021,498388617,507036251
    ,515673696,524309392,532936342,541555851,550170437,558778993,567382703,575978253,584570200,593155089,601735269,610308664,618878615,627440336
    ,635997249,644550922,653099304,661643304,670180516,678714823,687242934,695766925,704286233,712799821,721310048,729813991,738315156,746813071
    ,755305935,763794029,772276773,780756650,789230673,797703398,806169530,814633249,823092766,831548431,840000027,848450250,856895823,865335133
    ,873772692,882206716};
// bitset<500000> b;
//
// ll solve3sub(ll n){
// int i;
// ll s, k, res;
//
// if(n < 1000000){
// for(i=0;i<ps;i++) if(p[i] > n) break;
// return i;
// }
//
// s = n / 200000000;
// if(s){
// res = memo[s-1];
// s *= 200000000;
// } else {
// res = ps;
// s = 1000000;
// }
//
// for(;;s+=1000000){
// b.set();
// for(i=1;;i++){
// k = (ll) p[i] * p[i] - s;
// if(k >= 1000000) break;
// if(k < 0) k += ((-k+p[i]-1) / p[i]) * p[i];
// if(k % 2 == 0) k += p[i];
// k /= 2;
// while(k < 500000) b.reset(k), k += p[i];
// }
// if(n-s < 1000000){
// for(i=1;i<=n-s;i+=2) res += b[i/2];
// break;
// }
// res += b.count();
// }
//
// return res;
// }
//
// ll solve3(ll L, ll R){
// return solve3sub(2*R) - solve3sub(2*L) + solve3sub(R) - solve3sub(L-1);
// }
//
// ll cntPrime(ll n, void *mem = wmem){
// int i, j, sn;
// char *isp;
// ll *s1, *s2, x, c = -1;
// if(n <= 1) return 0;
// if(n == 2) return 1;
//
// sn = Isqrt_f(n);
// walloc1d(&s1, sn+1, &mem);
// walloc1d(&s2, sn+1, &mem);
// walloc1d(&isp, sn+1, &mem);
//
// s1[0] = 0;
// rep(i,1,sn+1) s1[i] = i - 1;
// rep(i,1,sn+1) s2[i] = n/i - 1;
// rep(i,2,sn+1) isp[i] = 1;
//
// rep(i,2,sn+1) if(isp[i]){
// for(j=2*i;j<=sn;j+=i) isp[j] = 0;
// c++;
//
// rep(j,1,sn+1){
// if((ll)i*i*j > n) break_continue;
// x = n / j / i;
// if(x <= sn) s2[j] -= s1[x] - c;
// else s2[j] -= s2[i*j] - c;
// }
// rrep(j,(ll)i*i,sn+1){
// s1[j] -= s1[j/i] - c;
// }
// }
//
// return s2[1];
// }
//
// ll solve4(ll L, ll R){
// return cntPrime(2*R) - cntPrime(2*L) + cntPrime(R) - cntPrime(L-1);
// }
//
// {
// ll L, R, res;
// L = llReader(1, 1d10-1, ' ');
// R = llReader(L, 1d10-1, '\n');
// assert(getchar() == EOF);
//
// res = solve4(L,R);
// wt(res);
// return 0;
//
// int i, j;
// for(i=2;i<2d7+1;i++) ppp[i] = 1;
// for(i=2;i<2d7+1;i++) if(ppp[i]) for(j=2*i;j<2d7+1;j+=i) ppp[j] = 0;
//
// p[2] = 1;
// for(i=3;i<1000000;i+=2) p[i] = 1;
// for(i=3;i<1000;i+=2) if(p[i]) for(j=i*i;j<1000000;j+=i) p[j] = 0;
// for(i=0;i<1000000;i++) if(p[i]) p[ps++] = i;
//
// if(1){
// ll L, R;
// ll r1, r2, r3, r4;
// Rand rnd;
//
// puts("");
// rep(L,1,30) rep(R,L,30){
// r1 = solve1(L,R);
// r2 = solve2(L,R);
// r3 = solve3(L,R);
// r4 = solve4(L,R);
// wt(L,R,":",r1,r2,r3,r4);
// assert(r1==r2==r3==r4);
// }
//
// rep(100){
// L = rnd.get(1LL, 1d10);
// R = rnd.get(1LL, 1d10);
// sortE(L,R);
// r3 = solve3(L,R);
// r4 = solve4(L,R);
// wt(L,R,":",r3,r4);
// assert(r3==r4);
// }
// }
//
// }
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0