結果

問題 No.1678 Coin Trade (Multiple)
ユーザー chocoruskchocorusk
提出日時 2021-08-02 03:59:42
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 2,450 ms / 5,000 ms
コード長 5,534 bytes
コンパイル時間 289 ms
コンパイル使用メモリ 82,304 KB
実行使用メモリ 268,940 KB
最終ジャッジ日時 2024-06-11 21:35:41
合計ジャッジ時間 39,819 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 56
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
read=sys.stdin.buffer.read
readline=sys.stdin.buffer.readline
readlines=sys.stdin.buffer.readlines

# https://atcoder.jp/contests/practice2/submissions/20652483
import heapq
 
 
class mcf_graph:
 
    def __init__(self, n):
        self.n = n
        self._edges = []
 
    def add_edge(self, from_, to, cap, cost):
        assert 0 <= from_ < self.n
        assert 0 <= to < self.n
        assert 0 <= cap
        assert 0 <= cost
        m = len(self._edges)
        self._edges.append(self.__class__.edge(from_, to, cap, 0, cost))
        return m
 
    class edge:
        def __init__(self, from_, to, cap, flow, cost):
            self.from_ = from_
            self.to = to
            self.cap = cap
            self.flow = flow
            self.cost = cost
 
    def get_edge(self, i):
        m = len(self._edges)
        assert 0 <= i < m
        return self._edges[i]
 
    def edges(self):
        return self._edges.copy()
 
    def _dual_ref(self, s, t):
        self.dist = [float('inf')] * self.n
        self.vis = [False] * self.n
        que_min = []
        que = []
        que_push_que = []
        self.dist[s] = 0
        que_min.append(s)
        while que_min or que or que_push_que:
            if que_min:
                v = que_min.pop()
            else:
                for e in que_push_que:
                    heapq.heappush(que, e)
                que_push_que.clear()
                _, v = heapq.heappop(que)
            if self.vis[v]:
                continue
            self.vis[v] = True
            if v == t:
                break
            dual_v = self.dual[v]
            dist_v = self.dist[v]
            for i in range(self.start[v], self.start[v + 1]):
                e = self.elist[i]
                if not e.cap:
                    continue
                cost = e.cost - self.dual[e.to] + dual_v
                if self.dist[e.to] - dist_v > cost:
                    dist_to = dist_v + cost
                    self.dist[e.to] = dist_to
                    self.prev_e[e.to] = e.rev
                    if dist_to == dist_v:
                        que_min.append(e.to)
                    else:
                        que_push_que.append((dist_to, e.to))
        if not self.vis[t]:
            return False
 
        for v in range(self.n):
            if not self.vis[v]:
                continue
            self.dual[v] -= self.dist[t] - self.dist[v]
 
        return True
 
    def _csr(self):
        m = len(self._edges)
        self.edge_idx = [0] * m
        redge_idx = [0] * m
        degree = [0] * self.n
        edges = []
        for i, e in enumerate(self._edges):
            self.edge_idx[i] = degree[e.from_]
            degree[e.from_] += 1
            redge_idx[i] = degree[e.to]
            degree[e.to] += 1
            edges.append((e.from_, self.__class__._edge(e.to, -1, e.cap - e.flow, e.cost)))
            edges.append((e.to, self.__class__._edge(e.from_, -1, e.flow, -e.cost)))
        self.start = [0] * (self.n + 1)
        self.elist = [0] * len(edges)
        for v, w in edges:
            self.start[v + 1] += 1
        for i in range(1, self.n + 1):
            self.start[i] += self.start[i-1]
        counter = self.start.copy()
        for v, w in edges:
            self.elist[counter[v]] = w
            counter[v] += 1
        for i, e in enumerate(self._edges):
            self.edge_idx[i] += self.start[e.from_]
            redge_idx[i] += self.start[e.to]
            self.elist[self.edge_idx[i]].rev = redge_idx[i]
            self.elist[redge_idx[i]].rev = self.edge_idx[i]
 
    def slope(self, s, t, flow_limit=float('inf')):
        assert 0 <= s < self.n
        assert 0 <= t < self.n
        assert s != t
 
        self._csr()
 
        self.dual = [0] * self.n
        self.dist = [float('inf')] * self.n
        self.prev_e = [0] * self.n
        self.vis = [False] * self.n
 
        flow = 0
        cost = 0
        prev_cost_per_flow = -1
        result = [(0, 0)]
        while flow < flow_limit:
            if not self._dual_ref(s, t):
                break
            c = flow_limit - flow
            v = t
            while v != s:
                c = min(c, self.elist[self.elist[self.prev_e[v]].rev].cap)
                v = self.elist[self.prev_e[v]].to
            v = t
            while v != s:
                e = self.elist[self.prev_e[v]]
                e.cap += c
                self.elist[e.rev].cap -= c
                v = self.elist[self.prev_e[v]].to
            d = -self.dual[s]
            flow += c
            cost += c * d
            if prev_cost_per_flow == d:
                result.pop()
            result.append((flow, cost))
            prev_cost_per_flow = d
 
        for i in range(len(self._edges)):
            e = self.elist[self.edge_idx[i]]
            self._edges[i].flow = self._edges[i].cap - e.cap
        
        return result
 
    def flow(self, s, t, flow_limit=float('inf')):
        return self.slope(s, t, flow_limit)[-1]
 
    class _edge:
        def __init__(self, to, rev, cap, cost):
            self.to = to
            self.rev = rev
            self.cap = cap
            self.cost = cost

n, k=map(int, readline().split())
inf=10**9
g=mcf_graph(n)
a=[0]*n
for i in range(n):
    a[i], m=map(int, readline().split())
    b=list(map(int, readline().split()))
    for bi in b:
        bi-=1
        g.add_edge(bi, i, 1, a[bi]-a[i]+inf*(i-bi))
for i in range(n-1):
    g.add_edge(i, i+1, k, inf)
print(inf*(n-1)*k-g.flow(0, n-1, k)[1])
0