結果

問題 No.3046 yukicoderの過去問
ユーザー umezoumezo
提出日時 2021-08-02 16:41:26
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 509 ms / 2,000 ms
コード長 9,038 bytes
コンパイル時間 2,808 ms
コンパイル使用メモリ 227,300 KB
実行使用メモリ 21,808 KB
最終ジャッジ日時 2024-09-16 14:39:51
合計ジャッジ時間 6,292 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 496 ms
21,808 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 509 ms
21,684 KB
testcase_06 AC 505 ms
21,688 KB
testcase_07 AC 499 ms
21,664 KB
testcase_08 AC 508 ms
21,692 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<b;i++)
#define rrep(i,a,b) for(int i=a;i>=b;i--)
#define fore(i,a) for(auto &i:a)
#define all(x)(x).begin(),(x).end()
//#pragma GCC optimize("-O3")
using namespace std;
typedef long long ll;const int inf=INT_MAX/2;const ll infl=1LL<<60;
template<class T>bool chmax(T& a,const T& b){if(a<b){a=b;return 1;}return 0;}
template<class T>bool chmin(T& a,const T& b){if(b<a){a=b;return 1;}return 0;}

template<int MOD> struct ModInt{
  static const int Mod=MOD;unsigned x;ModInt():x(0){}
  ModInt(signed sig){x=sig<0 ? sig%MOD+MOD:sig%MOD;}
  ModInt(signed long long sig){x=sig<0 ? sig%MOD+MOD:sig%MOD;}
  int get() const{return(int)x;}
  ModInt& operator+=(ModInt that){if((x+=that.x)>=MOD) x-=MOD;return *this;}
  ModInt& operator-=(ModInt that){if((x+=MOD-that.x)>=MOD) x-=MOD;return *this;}
  ModInt& operator*=(ModInt that){x=(unsigned long long)x*that.x%MOD;return *this;}
  ModInt& operator/=(ModInt that){return *this*=that.inverse();}
  ModInt operator+(ModInt that) const{return ModInt(*this)+=that;}
  ModInt operator-(ModInt that) const{return ModInt(*this)-=that;}
  ModInt operator*(ModInt that) const{return ModInt(*this)*=that;}
  ModInt operator/(ModInt that) const{return ModInt(*this)/=that;}
  ModInt inverse() const{
    long long a=x,b=MOD,u=1,v=0;
    while(b){long long t=a/b;a-=t*b;std::swap(a,b);u-=t*v;std::swap(u,v);}
    return ModInt(u);
  }
  bool operator==(ModInt that) const{return x==that.x;}
  bool operator!=(ModInt that) const{return x != that.x;}
  ModInt operator-() const{ModInt t;t.x=x==0 ? 0:Mod-x;return t;}
};
template<int MOD> ostream& operator<<(ostream& st,const ModInt<MOD> a){st<<a.get();return st;};
template<int MOD> ModInt<MOD> operator^(ModInt<MOD> a,unsigned long long k){
  ModInt<MOD> r=1;while(k){if(k & 1) r*=a;a*=a;k >>= 1;}return r;
}
typedef ModInt<1000000007> mint;
template<typename T>
struct FormalPowerSeries{
  using Poly=vector<T>;
  using Conv=function<Poly(Poly,Poly)>;
  Conv conv;
  FormalPowerSeries(Conv conv) :conv(conv){}

  Poly pre(const Poly& as,int deg){
    return Poly(as.begin(),as.begin()+min((int)as.size(),deg));
  }

  Poly add(Poly as,Poly bs){
    int sz=max(as.size(),bs.size());
    Poly cs(sz,T(0));
    for(int i=0;i<(int)as.size();i++) cs[i]+=as[i];
    for(int i=0;i<(int)bs.size();i++) cs[i]+=bs[i];
    return cs;
  }

  Poly sub(Poly as,Poly bs){
    int sz=max(as.size(),bs.size());
    Poly cs(sz,T(0));
    for(int i=0;i<(int)as.size();i++) cs[i]+=as[i];
    for(int i=0;i<(int)bs.size();i++) cs[i]-=bs[i];
    return cs;
  }

  Poly mul(Poly as,Poly bs){
    return conv(as,bs);
  }

  Poly mul(Poly as,T k){
    for(auto& a:as) a*=k;
    return as;
  }

  // F(0) must not be 0
  Poly inv(Poly as,int deg){
    assert(as[0] != T(0));
    Poly rs({ T(1)/as[0] });
    for(int i=1;i<deg;i<<=1)
      rs=pre(sub(add(rs,rs),mul(mul(rs,rs),pre(as,i<<1))),i<<1);
    return rs;
  }

  // not zero
  Poly div(Poly as,Poly bs){
    int a=as.size(),b=bs.size();//
    while(as.back()==T(0)) as.pop_back();
    while(bs.back()==T(0)) bs.pop_back();
    if(bs.size() > as.size()) return Poly();
    reverse(as.begin(),as.end());
    reverse(bs.begin(),bs.end());
    int need=as.size()-bs.size()+1;
    Poly ds=pre(mul(as,inv(bs,need)),need);
    reverse(ds.begin(),ds.end());
    ds.resize(a+b-1);//
    return ds;
  }

  // F(0) must be 1
  Poly sqrt(Poly as,int deg){
    assert(as[0]==T(1));
    T inv2=T(1)/T(2);
    Poly ss({ T(1) });
    for(int i=1;i<deg;i<<=1){
      ss=pre(add(ss,mul(pre(as,i<<1),inv(ss,i<<1))),i<<1);
      for(T& x:ss) x*=inv2;
    }
    return ss;
  }

  Poly diff(Poly as){
    int n=as.size();
    Poly res(n-1);
    for(int i=1;i<n;i++) res[i-1]=as[i]*T(i);
    return res;
  }

  Poly integral(Poly as){
    int n=as.size();
    Poly res(n+1);
    res[0]=T(0);
    for(int i=0;i<n;i++) res[i+1]=as[i]/T(i+1);
    return res;
  }
  
  Poly pow(Poly as,ll m){
    Poly res(1);
    res[0]=1;
    while(m){
    if(m&1) res=conv(res,as);
    as=conv(as,as);
    m/=2;
    }
    return res;
  }

  // F(0) must be 1
  Poly log(Poly as,int deg){
    return pre(integral(mul(diff(as),inv(as,deg))),deg);
  }

  // F(0) must be 0
  Poly exp(Poly as,int deg){
    Poly f({ T(1) });
    as[0]+=T(1);
    for(int i=1;i<deg;i<<=1)
      f=pre(mul(f,sub(pre(as,i<<1),log(f,i<<1))),i<<1);
    return f;
  }

  Poly partition(int n){
    Poly rs(n+1);
    rs[0]=T(1);
    for(int k=1;k<=n;k++){
      if(1LL*k *(3*k+1)/2<=n) rs[k *(3*k+1)/2]+=T(k%2 ? -1LL:1LL);
      if(1LL*k *(3*k-1)/2<=n) rs[k *(3*k-1)/2]+=T(k%2 ? -1LL:1LL);
    }
    return inv(rs,n+1);
  }
};
#define FOR(i,n) for(int i=0;i<(n);i++)
#define sz(c)((int)(c).size())
#define ten(x)((int)1e##x)
template<class T> T extgcd(T a,T b,T& x,T& y){for(T u=y=1,v=x=0;a;){T q=b/a;swap(x-=q*u,u);swap(y-=q*v,v);swap(b-=q*a,a);}return b;}
template<class T> T mod_inv(T a,T m){T x,y;extgcd(a,m,x,y);return(m+x%m)%m;}
ll mod_pow(ll a,ll n,ll mod){ll ret=1;ll p=a%mod;while(n){if(n & 1) ret=ret*p%mod;p=p*p%mod;n >>= 1;}return ret;}
struct MathsNTTModAny{
  template<int mod,int primitive_root>
  class NTT{
  public:
    int get_mod() const{return mod;}
    void _ntt(vector<ll>& a,int sign){
      const int n=sz(a);
      assert((n ^(n & -n))==0);//n=2^k

      const int g=3;//g is primitive root of mod
      int h=(int)mod_pow(g,(mod-1)/n,mod);// h^n=1
      if(sign==-1) h=(int)mod_inv(h,mod);//h=h^-1%mod

      //bit reverse
      int i=0;
      for(int j=1;j<n-1;++j){
        for(int k=n >> 1;k >(i ^= k);k >>= 1);
        if(j<i) swap(a[i],a[j]);
      }

      for(int m=1;m<n;m*=2){
        const int m2=2*m;
        const ll base=mod_pow(h,n/m2,mod);
        ll w=1;
        FOR(x,m){
          for(int s=x;s<n;s+=m2){
            ll u=a[s];
            ll d=a[s+m]*w%mod;
            a[s]=u+d;
            if(a[s]>=mod) a[s]-=mod;
            a[s+m]=u-d;
            if(a[s+m]<0) a[s+m]+=mod;
          }
          w=w*base%mod;
        }
      }

      for(auto& x:a) if(x<0) x+=mod;
    }
    void ntt(vector<ll>& input){
      _ntt(input,1);
    }
    void intt(vector<ll>& input){
      _ntt(input,-1);
      const int n_inv=mod_inv(sz(input),mod);
      for(auto& x:input) x=x*n_inv%mod;
    }

    vector<ll> convolution(const vector<ll>& a,const vector<ll>& b){
      int ntt_size=1;
      while(ntt_size<sz(a)+sz(b)) ntt_size*=2;

      vector<ll> _a=a,_b=b;
      _a.resize(ntt_size);_b.resize(ntt_size);

      ntt(_a);
      ntt(_b);

      FOR(i,ntt_size){
       (_a[i]*=_b[i])%=mod;
      }

      intt(_a);
      return _a;
    }
  };

  ll garner(vector<pair<int,int>> mr,int mod){
    mr.emplace_back(mod,0);

    vector<ll> coffs(sz(mr),1);
    vector<ll> constants(sz(mr),0);
    FOR(i,sz(mr)-1){
      // coffs[i]*v+constants[i]==mr[i].second(mod mr[i].first)
      ll v=(mr[i].second-constants[i])*mod_inv<ll>(coffs[i],mr[i].first)%mr[i].first;
      if(v<0) v+=mr[i].first;

      for(int j=i+1;j<sz(mr);j++){
       (constants[j]+=coffs[j]*v)%=mr[j].first;
       (coffs[j]*=mr[i].first)%=mr[j].first;
      }
    }

    return constants[sz(mr)-1];
  }

  typedef NTT<167772161,3> NTT_1;
  typedef NTT<469762049,3> NTT_2;
  typedef NTT<1224736769,3> NTT_3;

  vector<ll> solve(vector<ll> a,vector<ll> b,int mod=1000000007){
    for(auto& x:a) x%=mod;
    for(auto& x:b) x%=mod;

    NTT_1 ntt1;NTT_2 ntt2;NTT_3 ntt3;
    assert(ntt1.get_mod()<ntt2.get_mod() && ntt2.get_mod()<ntt3.get_mod());
    auto x=ntt1.convolution(a,b);
    auto y=ntt2.convolution(a,b);
    auto z=ntt3.convolution(a,b);

    const ll m1=ntt1.get_mod(),m2=ntt2.get_mod(),m3=ntt3.get_mod();
    const ll m1_inv_m2=mod_inv<ll>(m1,m2);
    const ll m12_inv_m3=mod_inv<ll>(m1*m2,m3);
    const ll m12_mod=m1*m2%mod;
    vector<ll> ret(sz(x));
    FOR(i,sz(x)){
      ll v1=(y[i]-x[i])*m1_inv_m2%m2;
      if(v1<0) v1+=m2;
      ll v2=(z[i]-(x[i]+m1*v1)%m3)*m12_inv_m3%m3;
      if(v2<0) v2+=m3;
      ll constants3=(x[i]+m1*v1+m12_mod*v2)%mod;
      if(constants3<0) constants3+=mod;
      ret[i]=constants3;
    }

    return ret;
  }

  vector<int> solve(vector<int> a,vector<int> b,int mod=1000000007){
    vector<ll> x(all(a));
    vector<ll> y(all(b));

    auto z=solve(x,y,mod);
    vector<int> res;
    fore(aa,z) res.push_back(aa%mod);

    return res;
  }

  vector<mint> solve(vector<mint> a,vector<mint> b,int mod=1000000007){
    int n=a.size();
    vector<ll> x(n);
    rep(i,0,n) x[i]=a[i].get();
    n=b.size();
    vector<ll> y(n);
    rep(i,0,n) y[i]=b[i].get();

    auto z=solve(x,y,mod);
    vector<int> res;
    fore(aa,z) res.push_back(aa%mod);

    vector<mint> res2;
    fore(x,res) res2.push_back(x);

    return res2;
  }
};

int main(){
  ios::sync_with_stdio(false);
  std::cin.tie(nullptr);
  
  using T=mint;
  FormalPowerSeries<T> FPS([&](auto a,auto b){
  MathsNTTModAny ntt;
  return ntt.solve(a,b);
  });

  int k,n;
  cin>>k>>n;
  vector<T> f(k+1);
  rep(i,0,n){
    int x;
    cin>>x;
    f[x]=-1;
  }
  
  f[0]=f[0]+1;
  f=FPS.inv(f,k+1);
  cout<<f[k]<<endl;
  
  return 0;
}
0