結果
| 問題 | No.109 N! mod M |
| コンテスト | |
| ユーザー |
vwxyz
|
| 提出日時 | 2021-08-03 03:05:12 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 296 ms / 5,000 ms |
| コード長 | 5,179 bytes |
| コンパイル時間 | 262 ms |
| コンパイル使用メモリ | 82,048 KB |
| 実行使用メモリ | 90,368 KB |
| 最終ジャッジ日時 | 2024-09-16 14:49:50 |
| 合計ジャッジ時間 | 2,823 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 9 |
ソースコード
import bisect
import copy
import decimal
import fractions
import heapq
import itertools
import math
import random
import sys
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
heap.append(item)
heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
if heap and item < heap[0]:
item, heap[0] = heap[0], item
heapq._siftup_max(heap, 0)
return item
from math import gcd as GCD, inf, modf
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines
def Extended_Euclid(n,m):
stack=[]
while m:
stack.append((n,m))
n,m=m,n%m
if n>=0:
x,y=1,0
else:
x,y=-1,0
for i in range(len(stack)-1,-1,-1):
n,m=stack[i]
x,y=y,x-(n//m)*y
return x,y
class MOD:
def __init__(self,mod):
self.mod=mod
def Pow(self,a,n):
a%=self.mod
if n>=0:
return pow(a,n,self.mod)
else:
assert math.gcd(a,self.mod)==1
x=Extended_Euclid(a,self.mod)[0]
return pow(x,-n,self.mod)
def Build_Fact(self,N):
assert N>=0
self.factorial=[1]
for i in range(1,N+1):
self.factorial.append((self.factorial[-1]*i)%self.mod)
self.factorial_inv=[None]*(N+1)
self.factorial_inv[-1]=self.Pow(self.factorial[-1],-1)
for i in range(N-1,-1,-1):
self.factorial_inv[i]=(self.factorial_inv[i+1]*(i+1))%self.mod
return self.factorial_inv
def Fact(self,N):
return self.factorial[N]
def Fact_Inv(self,N):
return self.factorial_inv[N]
def Comb(self,N,K):
if K<0 or K>N:
return 0
s=self.factorial[N]
s=(s*self.factorial_inv[K])%self.mod
s=(s*self.factorial_inv[N-K])%self.mod
return s
class Prime:
def __init__(self,N):
self.smallest_prime_factor=[None]*(N+1)
for i in range(2,N+1,2):
self.smallest_prime_factor[i]=2
n=int(N**.5)+1
for p in range(3,n,2):
if self.smallest_prime_factor[p]==None:
self.smallest_prime_factor[p]=p
for i in range(p**2,N+1,2*p):
if self.smallest_prime_factor[i]==None:
self.smallest_prime_factor[i]=p
for p in range(n,N+1):
if self.smallest_prime_factor[p]==None:
self.smallest_prime_factor[p]=p
self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]]
def Factorize(self,N):
assert N>=1
factorize=defaultdict(int)
if N<=len(self.smallest_prime_factor)-1:
while N!=1:
factorize[self.smallest_prime_factor[N]]+=1
N//=self.smallest_prime_factor[N]
else:
for p in self.primes:
while N%p==0:
N//=p
factorize[p]+=1
if N<p*p:
if N!=1:
factorize[N]+=1
break
if N<=len(self.smallest_prime_factor)-1:
while N!=1:
factorize[self.smallest_prime_factor[N]]+=1
N//=self.smallest_prime_factor[N]
break
else:
if N!=1:
factorize[N]+=1
return factorize
def Divisors(self,N):
assert N>0
divisors=[1]
for p,e in self.Factorize(N).items():
A=[1]
for _ in range(e):
A.append(A[-1]*p)
divisors=[i*j for i in divisors for j in A]
return divisors
def Is_Prime(self,N):
return N==self.smallest_prime_factor[N]
def Totient(self,N):
for p in self.Factorize(N).keys():
N*=p-1
N//=p
return N
def CRT(lst_r,lst_m):
r,m=lst_r[0],lst_m[0]
for r0,m0 in zip(lst_r[1:],lst_m[1:]):
if (r0,m0)==(-1,0):
r,m=-1,0
break
r0%=m0
g=math.gcd(m,m0)
l=LCM(m,m0)
if r%g!=r0%g:
r,m=-1,0
break
r,m=(r0+m0*(((r-r0)//g)*Extended_Euclid(m0//g,m//g)[0]%(m//g)))%l,l
return r,m
def LCM(n,m):
if n or m:
return abs(n)*abs(m)//math.gcd(n,m)
return 0
T=int(readline())
P=Prime(10**5)
for _ in range(T):
N,M=map(int,readline().split())
lst_r,lst_m=[],[]
if M==1:
ans=0
else:
for p,e in P.Factorize(M).items():
m=p**e
if m<=N:
r=0
elif e==1:
r=1
for i in range(N+1,p):
r*=i
r%=p
r=(-1)*MOD(p).Pow(r,-1)%m
else:
r=1
for i in range(1,N+1):
r*=i
r%=m
if r==0:
break
lst_r.append(r)
lst_m.append(m)
ans,_=CRT(lst_r,lst_m)
print(ans)
vwxyz