結果
問題 | No.1660 Matrix Exponentiation |
ユーザー | stoq |
提出日時 | 2021-08-03 16:12:10 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
MLE
|
実行時間 | - |
コード長 | 6,189 bytes |
コンパイル時間 | 2,723 ms |
コンパイル使用メモリ | 218,484 KB |
実行使用メモリ | 846,080 KB |
最終ジャッジ日時 | 2024-11-21 00:18:34 |
合計ジャッジ時間 | 28,702 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
13,636 KB |
testcase_01 | AC | 2 ms
28,836 KB |
testcase_02 | AC | 2 ms
13,636 KB |
testcase_03 | AC | 2 ms
6,816 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 2 ms
6,816 KB |
testcase_06 | AC | 277 ms
6,820 KB |
testcase_07 | AC | 2 ms
6,816 KB |
testcase_08 | AC | 2 ms
6,816 KB |
testcase_09 | MLE | - |
testcase_10 | MLE | - |
testcase_11 | MLE | - |
testcase_12 | AC | 3 ms
6,692 KB |
testcase_13 | AC | 2 ms
6,688 KB |
testcase_14 | AC | 10 ms
6,688 KB |
testcase_15 | TLE | - |
testcase_16 | AC | 1,003 ms
12,032 KB |
testcase_17 | AC | 166 ms
6,692 KB |
testcase_18 | TLE | - |
testcase_19 | MLE | - |
testcase_20 | MLE | - |
testcase_21 | MLE | - |
testcase_22 | MLE | - |
testcase_23 | MLE | - |
testcase_24 | MLE | - |
testcase_25 | MLE | - |
testcase_26 | MLE | - |
testcase_27 | MLE | - |
testcase_28 | MLE | - |
testcase_29 | MLE | - |
ソースコード
#define MOD_TYPE 2 #pragma region Macros #include <bits/stdc++.h> using namespace std; #if 1 #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #endif #if 0 #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> #include <ext/pb_ds/tag_and_trait.hpp> #include <ext/rope> using namespace __gnu_pbds; using namespace __gnu_cxx; template <typename T> using extset = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>; #endif #if 0 #include <boost/multiprecision/cpp_int.hpp> #include <boost/multiprecision/cpp_dec_float.hpp> using Int = boost::multiprecision::cpp_int; using lld = boost::multiprecision::cpp_dec_float_100; #endif using ll = long long int; using ld = long double; using pii = pair<int, int>; using pll = pair<ll, ll>; using pld = pair<ld, ld>; template <typename T> using smaller_queue = priority_queue<T, vector<T>, greater<T>>; constexpr ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353); constexpr int INF = (int)1e9 + 10; constexpr ll LINF = (ll)4e18; constexpr ld PI = acos(-1.0); constexpr ld EPS = 1e-7; constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0}; constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0}; #define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i) #define rep(i, n) REP(i, 0, n) #define REPI(i, m, n) for (int i = m; i < (int)(n); ++i) #define repi(i, n) REPI(i, 0, n) #define MP make_pair #define MT make_tuple #define YES(n) cout << ((n) ? "YES" : "NO") << "\n" #define Yes(n) cout << ((n) ? "Yes" : "No") << "\n" #define possible(n) cout << ((n) ? "possible" : "impossible") << "\n" #define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n" #define all(v) v.begin(), v.end() #define NP(v) next_permutation(all(v)) #define dbg(x) cerr << #x << ":" << x << "\n"; struct io_init { io_init() { cin.tie(0); ios::sync_with_stdio(false); cout << setprecision(30) << setiosflags(ios::fixed); }; } io_init; template <typename T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template <typename T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } inline ll CEIL(ll a, ll b) { return (a + b - 1) / b; } template <typename A, size_t N, typename T> inline void Fill(A (&array)[N], const T &val) { fill((T *)array, (T *)(array + N), val); } template <typename T, typename U> constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept { is >> p.first >> p.second; return is; } template <typename T, typename U> constexpr ostream &operator<<(ostream &os, pair<T, U> &p) noexcept { os << p.first << " " << p.second; return os; } #pragma endregion random_device seed_gen; mt19937_64 engine(seed_gen()); // -------------------------------------- #pragma region mint template <int MOD> struct Fp { long long val; constexpr Fp(long long v = 0) noexcept : val(v % MOD) { if (val < 0) v += MOD; } constexpr int getmod() { return MOD; } constexpr Fp operator-() const noexcept { return val ? MOD - val : 0; } constexpr Fp operator+(const Fp &r) const noexcept { return Fp(*this) += r; } constexpr Fp operator-(const Fp &r) const noexcept { return Fp(*this) -= r; } constexpr Fp operator*(const Fp &r) const noexcept { return Fp(*this) *= r; } constexpr Fp operator/(const Fp &r) const noexcept { return Fp(*this) /= r; } constexpr Fp &operator+=(const Fp &r) noexcept { val += r.val; if (val >= MOD) val -= MOD; return *this; } constexpr Fp &operator-=(const Fp &r) noexcept { val -= r.val; if (val < 0) val += MOD; return *this; } constexpr Fp &operator*=(const Fp &r) noexcept { val = val * r.val % MOD; if (val < 0) val += MOD; return *this; } constexpr Fp &operator/=(const Fp &r) noexcept { long long a = r.val, b = MOD, u = 1, v = 0; while (b) { long long t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } val = val * u % MOD; if (val < 0) val += MOD; return *this; } constexpr bool operator==(const Fp &r) const noexcept { return this->val == r.val; } constexpr bool operator!=(const Fp &r) const noexcept { return this->val != r.val; } friend constexpr ostream &operator<<(ostream &os, const Fp<MOD> &x) noexcept { return os << x.val; } friend constexpr istream &operator>>(istream &is, Fp<MOD> &x) noexcept { return is >> x.val; } }; Fp<MOD> modpow(const Fp<MOD> &a, long long n) noexcept { if (n == 0) return 1; auto t = modpow(a, n / 2); t = t * t; if (n & 1) t = t * a; return t; } using mint = Fp<MOD>; #pragma endregion using Matrix = vector<vector<mint>>; ostream &operator<<(ostream &os, Matrix &A) noexcept { rep(i, A.size()) { rep(j, A[0].size()) { cout << A[i][j] << (j + 1 == A[0].size() ? "\n" : " "); } } return os; } Matrix E(int n) { Matrix res(n, vector<mint>(n)); rep(i, n) rep(j, n) { if (i == j) res[i][j] = 1; else res[i][j] = 0; } return res; } Matrix matprod(Matrix A, Matrix B) { assert(A[0].size() == B.size()); int l = A.size(), m = A[0].size(), n = B[0].size(); Matrix C(l, vector<mint>(n, 0)); rep(i, l) rep(j, n) { rep(k, m) C[i][j] += A[i][k] * B[k][j]; } return C; } Matrix matpow(Matrix A, ll n) { assert(n >= 0); Matrix res = E(A.size()), P = A; while (n > 0) { if (n & 1) res = matprod(res, P); P = matprod(P, P); n >>= 1; } return res; } bool iszero(Matrix &A) { int n = A.size(); rep(i, n) rep(j, n) { if (A[i][j].val != 0) return false; } return true; } void solve() { // O(N^4) の愚直解 int n, k; cin >> n >> k; Matrix A(n, vector<mint>(n)); rep(i, k) { int r, c; cin >> r >> c; r--, c--; A[r][c] = 1; } auto P = E(n); for (int i = 1; i <= n; i++) { P = matprod(P, A); if (iszero(P)) { cout << i << "\n"; return; } } cout << -1 << "\n"; } int main() { solve(); }